Lecture 2: Training requirements for ML
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What is ®

Al/ML/DL? Artificial Machine Deep
Intelligence Learning Learning

Artificial Intelligence
(humanized systems able
to perform intelligent
tasks, e.g., autonomous
vehicle, CADg,x)

Originated in Originated in Originated in
the 1950s the 1960s the 1970s

achine Learning
(computer algorithms
perform prediction tasks
without being explicitly
programmed, e.g., decision
trees, neural networks,
support vector machines,...)

Build machines Computer Based on neural
that think like algorithms that networks that

Deep Learning

humans learn from data learn features

(data abstraction with
learning representation,
e.g., CNN)

El Naga, BJR 125% Annv., 2020




The Universe of Machine Learning (IVIL)

Deep Boltzmann Machine (DBEM)
Deep Belief Networks (DEN)
volutional Neural Network (CHNN)

WAuto—Encod ers

~, Deep Learning

Random Forest

Gradient Boosting Machines (GEM)

Maive Bayes

Averaged One-Dependence Estimators (ADDE)

Bayesian Belief Network (BBN)

Bayesian |
—(‘r' 1

Gaussian Naive Bayes

-
[}

Multinomial Maive Bayes

' Bayesian Network (BN)

Eoosting

Bootstrapped Aggregation (Bagging)

'.\ Ensemble

AdaBoost

Stacked Generalization (Blending)

Gradient Boosted Regression Trees (GBRT) /

Radial Basis Function Network (REFN)

Perceptron |

Back-Propagation |
Hopfield Network

Ridge Regression
Least Absolute Shrinkage and Selection Operator (LASSO)
Elastic Net

Least Angle Regression (LARS)
Cubist

One Rule (OneR) |
. Rule System
Zero Rule iZeroR) 7~

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

Linear Regression

Ordinary Least Squares Regression (OLSR)

-, Regularization
, oD RTLAIRIE

Stepwise Regression

Multivariate Adaptive Regression Splines (MARS)

Locally Estimated Scatterplot Smoothing (LOESS)

]
W)
A
]
|

Logistic Regression

- MNeural Networks
—

j":___r\-1achir1e Learning Algorithms_'_,-

Decision Tree |-

“._ Dimensionality Reduction

Classification and Regression Tree (CART)

[ lerative Dichotomiser 3 (ID3)
C4.5

1-

{ C5.0

Chi-squared Automatic Interaction Detection (CHAID)

|._ Decision Stump
Conditional Decision Trees
M5

Principal Component Analysis (PCA)

Partial Least Squares Regression (PLSR

Sammon Mapping

Multidimensional Scaling (MDS)

' Projection Pursuit

Principal Component Regression (PCR)

Regression /
}7

' Clustering |~
\4(..

Adapted from: Brownlee, 2013

Instance Based
e

Partial Least Squares Discriminant Analysis

Mixture Discriminant Analysis (MDA)

Quadratic Discriminant Analysis (QDA)

| Regularized Discriminant Analysis (RDA)

|\ Flexible Discriminant Analysis (FDA)

. Linear Discriminant Analysis (LDA)
k-Mearest Neighbour (kNN)

Learning Vector Quantization (V)
Self-Organizing Map (SOM)

Locally Weighted Learning (LWL)

k-Means

" k-Medians

Expectation Maximization

Hierarchical Clustering




Deep vs conventional machine learning ™

Conventional “shallow” learning process

Feature Features Detec_tf)r/ :
extractor Classifier M a ch | n e a n d D ee p

Learning in Oncology,
nput raw Output labels Medical Physics and
Deep learning process 'S Rad|0 Ogy

— Deep learning algorithm
Martin J. Murphy

Learning task Editors
(cfass{ﬁcatiop/detection)

Issam El Naga

Learning data Arepresentation

: [ | [ |
Input PET/CT image Convolutional layers

1 Fully connected layers

Pooling layers

Benign

@ Springer

Zaidi and El Naga, Annu. Rev. Biomed. Eng., 2021




Neural Networks Past and Present ),

Deep Neural Network

(Pretraining)
Multi-layered .
XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
A ~ Golden Age R Dark Age (“Al Winter”)
Electronic Brain

1950 1960 1970 1980

S. McCulloch - W. Pitts F.Rosenblatt  B. Widrow - M. Hoff M. Minsky - S. Papert

X AND Y XORY NOT X G : ; _ b
\ “"._ , ®e :
+] 4] -2 +1 4] -l -1 ® | . e ‘ ."—. 'S ! 600 . k) E| 7
X \|r \41 x/ ! ‘}1 J|< -@—— Backward Error , P o o i v -
« Adjustable Weights = Learnable Weights and Threshold « XOR Problem + Solution to nonlinearly separable problems  « Limitations of learning prior knowledge  * Hierarchical feature Learning
= Weights are not Learned + Big computation, local optima and overfitting + Kernel function: Human Intervention




Learning ML advice

Shane Legg o
@Shanelegg

Learn:

1. linear algebra well (e.g. matrix math)

2. calculus to an ok level (not advanced stuff)
3. prob. theory and stats to a good level

4. theoretical computer science basics

5. to code well in Python and ok in C++

Then read and implement ML papers and
*play* with stuff! :-)

aron @aron65900682

@ShanelLegg Hey Shane I’'m currently 17 from London England and am very
passionate about Al, also learning about in-depth human needs. What would be the
5 pieces of advice and tips you would give to a young person like me?



Regression methods ™

Regression model is:

Y ~ Model(X ) Y=1 -

Model: linear, logit, probit
»Xq, X,, ..., X, linearly additive

LOGISTIC REGRESSION MODEL

»Y and X have a monotonic relationship

LINEAR REGRESSION MODELL
e Ordinary estimation (no penalty)

e Regularization (shrinkage) estimation:

*Ridge ¥ ~ Model(XB)+ 1Y B

Y ~ Model(XB)+2 ) |, X

®| asso

eEstimation methods: Least-squares, maximum likelihood

Steyerberg, 2008; Hastie 2015, Moiseenko 2021




Deep learning with Neural Networks ()

Traditional
Input - Eﬁlmml = Features - ML —#| QOutput
Algorithm

Traditional Machine Learning Flow

Input

Deep Learning Algorithm

Deep Learning Flow

Output units

OO

Hidden units,

Input
units

cat dog person

The key aspect of deep learning is that these layers of features are not designed by human
engineers: they are learned from data using a general-purpose learning procedure

Rumelhart, 1986
e




Biological versus Artificial Neuron

impulses carried
toward cell body

SoftPlus

f(z) = log.(1+€7)

branches
dendrites J/ of axon
\7% axon Inputs —
nucleus——_g ' @%on _____ terminals
: - —_—i
ﬁ;f/ impulses carried
away from cell body
cell body
Hane Plot Equation Derivative

Tdentity / f(l') =T f,(l') =1
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— 2 ,
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Artificial neural networks (ANN) ™

Select an architecture (problem-dependent)

* |nputs, outputs, type and number of hidden layers,
activation functions

Wi

Define a cost (loss) function

e Quadratic (Rumelhart), exponential, cross-entropy,
KL divergence, etc.

\
LY
B
Y

P
>
e e - /
‘-‘\-:h i—;\_ﬂm 3 N\
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g S~ S0
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Choose a training (learning) technique

* Back propagation (gradient-descent) algorithms, WA % %

’ . . 3\ A ;.;-,: . ; h_

Newton’s methods, Conjugate gradients, LM
algorithm, etc.

P =

.
e [N T AN AT
W e, Sy N\ o4 o P
- - - - o - 'd
N ] L

Hidden Layer-1 Hidden Layer-2  Hidden Laver-3

Regularization

 Norm penalty (L1, L2), early stopping, dropout, data
augmentation, transfer learning, etc.




Deep Learning (NN) Architectures @

Iti—Iayer neural perceptron (MLP) Convolutional Neural Network (CNN) Recurrent Neural Network (RNN)

0

Convolution Pooling Convolution Pooling Fully Fully Output Predictions O
+ Relu +RetlU Connected Connected

\4 \4 VT
w s s S

U

o8 Lo Ko N

1 Ly el =" - dog (0.01) W O w
.-..,....'. E — | r g (0.04) Unfold
Bl T 0 I'-— h-o:t Lo{gacgzl U U U U
- . i I
s 5 4| I IEE ________ % X, X,

— (LSTM, GRU, Transformers, )
(LeNet, AlexNet, ResNet, VGG, U-net, DBN, DQN, ...)

Hidden Layer-1 Hidden Layer-2  Hidden Layer-3

Generative adversarial networks (GAN)

Autoencoders (AE)

Compressed Data

Training set Discriminator

AN

- Real

—>
Random — — {Fa ke

noise

\

Original
mushroom

O Learned
| N representation
) . V) Generator Fake mage
Encode Decode




Example architecture: CNN

Stride: amount of shift
Zero-padding 224

224

|
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CNN- LeNet5 (1998)

C1: featura m
6E28x28 e

INFUT
d2nd2

Convolutions

C3:f. maps 16@10x10
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3@14114

Subsampling

S4: 1. maps 16@5x5
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http://image-net.org/

Backpropagation algorithm: Gradient descent ™

* Basic gradient descent
— Wi,,=W;-n-VC(w; (X,y))
e Stochastic gradient descent (SGD)

qp‘q;lr ..,.t*p-

""ﬁ-‘
"‘ 1“
- ﬂ"'*’#*‘

_ Wi+1=Wi_n'VC(W; (Xbatch'ybatch)) & % ; *‘*.- %
e Other modifications

— Momentums, accelerations, adaptive gradient
(Adagrad), adaptive momentum (Adam), etc.

1. Input x: Set the corresponding activation a' for the input 0wy = a0 ( e e
aw error term o utput layer
layer. {compute gradient) —a® —y
\
2. Feedft d: Foreach/ =2,3,...,L t @ @ \
eedforward: For eac compute : - O sl - q \
Z =wla=' + bl and & = (). / /] N
Input x O O output Yy <= target y //
3. Output error §°: Compute the vector 6 = V,C © ¢’ (z5). \ /
O FiSENHY aaacanEas/ Al
. - - [ /
4. Backpropagate the error: Foreach/=L—-1,L-2,...,2 /
I _ (1T s+ 1l /
compute &' = (W )'6") © 6’ (2). 5(2) T '33( (1) NC —/
-0.5 | \ ™~ /’
5. Output: The gradient of the cost function is given by e e ' L \
=@ 'djand 55 = 5. Modified from Nielsen, 2018
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What training sample size is required? ™

Introduction to Machine and Deep Learning for Medical Physicists

Sunan Cuiﬂ Huan-Hsin Tseng Julia Pal{elaﬂ Randall K. Ten Hakenﬁ and Issam El Naqam
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, USA

A trainin
A validation
Total error 5 : :
add more data will help

;. ! !
5 £
= m

Variance
Optimal point
Bias | .
, < ; ;
Model complexity >

Training set size
Cui, Medical Physics, 2020




What evaluation plan for ML? ™

Choice of Learning Algornthm(s)

e ah |

All All Data
measures Reg
Confusion Matnx Additional info Alternate Ma
{Classifier Uncertainty Information Re-sampling
Cost ration, skew)
.// __H-H_'_L_"‘--___ e 1
| Deterministic Classifiers Scoring Caontinous and Simple
| Classifiers Prob. Classifiers Re-sampling
(Reliability metrics) - ]
|
Fa ) ,
Multi-class Single-Class ‘_l—l - o - paied
Focus Focus substitution Validation b-Sampling Cross-
; Distance/ | | Information \ J J Validation
Graphical | | Summary | g Theoretic |
measures Stahlstlcs measures Measures W m}w m:
k-told V-
— e C vﬁ"‘“@' ED Bootsirap Sx2CV 10100V
- Validation idation
Mo Chance PR Curves || H measure [ AMSE KL divergence N J | )
Chance- Correction DET Curves K:?HIFI
Correction Lift Charts
Cosl Curves
Interestingnass f
TP/EP Rate Comprehensibility
Accuracy |Cohen's Kappa|| Precision/Recall Multi-criteria
Error Rate | Fleiss Kappa ||~ Sens/Spec. 1 Evaluation
F-measura
Geom. Meaan
Dice

11— 2: knowledge of 1 is necessary for 2
| » 2 : feedback from 1 should be used to adjust 2

Jaﬁkowicz and Shahi 2015




Al/ML Validation

Depending on the level of evidence

* Selection appropriate learning algorithms
* Validation and evaluation (TRIPOD criteria)

* Internally (cross-validation
schemes)

Only a single data set
is available: All data
are used to develop

the model

P

Only a single data set
is available: A portion
of the data are used to

\

Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD)

\

Type 1a: Development only

Type 1b: Development and validation
using resampling

develop the model

Type 2a: Random split-sample

development and validation

Di\,/

Type 2b: Nonrandom split-sample

Only a single data set
is available: A separate
data set is available

development and validation

for validation

* Externally (independent datasets)
« Checklists: CLAIM, MI-, CLAIM, CONSORT-Al, CLAMP, ... s

* Provide interpretation of machine learning prediction

D v Type 3: Development and validation
using separate data
v — Type 4: Validation only

Description

Type 1a
Type 1b

Type 2a

Type 2b

Type 3
Type 4

Development of a prediction model where predictive performance is then directly evaluated using exactly the same data (apparent performance).

Development of a prediction model using the entire data set, but then using resampling (e.g., bootstrapping or cross-validation) techniques to
evaluate the performance and optimism of the developed model. Resampling techniques, generally referred to as “internal validation”, are
recommended as a prerequisite for prediction model development, particularly if data are limited (6, 14, 15).

The data are randomly split into 2 groups: one to develop the prediction model, and one to evaluate its predictive performance. This design is
generally not recommended or better than type 1b, particularly in case of limited data, because it leads to lack of power during model development
and validation (14, 15, 16).

The data are nonrandomly split (e.g., by location or time) into 2 groups: one to develop the prediction model and one to evaluate its predictive
performance. Type 2b is a stronger design for evaluating model performance than type 2a, because allows for nonrandom variation between the

2 data sets (6, 13, 17).

Development of a prediction model using 1 data set and an evaluation of its performance on separate data (e.g., from a different study).

The evaluation of the predictive performance of an existing (published) prediction model on separate data (13).

Types 3 and 4 are commonly referred to as “external validation studies.” Arguably type 2b is as well, although it may be considered an intermediary between

internal and external validation.




Quality assurance for Al/ML application in the clinic @

Acceptance Testing

* To ensure that the ML tool meets all applicable
safety and performance standards (prediction) and
that it meets contractual specifications

* Manufacturer includes an acceptance test
procedure with the ML tool

* Selection of evaluation endpoint and
definition of performance criteria (e.g., AUC);

e Selection of a benchmark data

Commissioning

* The process whereby the needed tool-specific
data/parameters are acquired and operational
procedures are defined

* May include:
* Training data collection
* Developing procedures
* User training before first use

Quality Assurance (QA)

* Effort to ensure treatments are given accurately,
safely and efficiently according to established tests
and evaluations

Continuing Quality Improvement (CQI)

» Effort that seeks to make treatments and
operations better by recognizing current
weaknesses in the program, anticipating problems
before they happen, streamlining tasks and
responding to changes in practice

312  THeE MoDerRN TECHNOLOGY OF RADIATION ONCOLOGY
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Table 10.1
Gontemporary QA considerations for the current state of machine learing
applications

CHAPTER 10: MACHINE LEARNING IN RaDIATION ONcoLogy 313
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Table 10.1 {continued)

G F
applications

ary QA cor

ions for the current state of machine learning

TYPE OF QA CONSIDERATIONS FOR THE CURRENT STATE

MAGHINE

LEARNING PERFORMED BY  COMMISSIONING ROUTINE QA RISK BEING
APPLICATION  REVIEWED BY MITIGATED
ML replacss Confirm function- = Evaluats ML againat currant = Frequency: monthly = Confirm that

human taska:
linsar accslsr-
ator QA

ML supplemsn-
1al to human
taske: freat-
ment planning

ality with sample
QA data (Rittsr st
al. 2018)

= Gonfirm func-
tionality with
"

clinic standards (Klein st al.
2008)

= Test limite of analytics such as
by inserting srrors into delivery
teate or datasets for analysis.

&.g.. intentional leaf cffest prac-

snt in the measursment rssult
but mizsing in the dslivery fila

= Document situations whers the.
software passes and fail

* Documsnt situations whers
recults differ by =5%

« Evaluate behavior against
appropriats portions of original
TPE i

P
plisd trsatment
plans

« Define scope of
ML for planning

ing recutte (if
available) (Frasss ot al. 1928)

= Ars clinical goals mat? Iz the
agraement within $5% for kay
metricz, such az mean doss for
targstz and max doss to a
volums (e.g., 1 oc)?

- Evaluats ML tools for a rangs
of body zitss and havs sits-
spacific rollout of tschniquss for
at lsast a limitsd numbsr of
bady sitas

- Evaluate parmizsions of differ-
snt uzer typss for applying ML
tachniquas (8. . physicist vs.
dosimstrist)

= Have differsnt uzsrs parform
the zame tect caze—recults
within 5%

- Establish procadurss for quality
control oteps post-application
of ML, 5.g., MD and physicist
review of final doss distribution

= Monitor softwars asttings for
analysia

= Repeat analysis of a subset of
the commizsioning datasst
(8.g.. dynamic lsaf gap) includ-
ing cne at the limit

* Expact idsntical resulta unlsss
the softwara has changsd.

» If sofware has changed,
determing if a new baseline is
neaded

= Evaluats againat a subset of
the manual analysis for soft-
wars updats

= Review trends

« Repeat analyziz of a subsst of
the commissioning datasst
(.g... dynamic lesf gap) includ-
ing ens at the limit

« Monitor key dosimstric results
from ML techniques using Big
Data Analytical toolz whers
availabls by body sits: 8.g. tar-
get coverage and maximum
dose 1o a volums (s.g.. Tec) for
OARz (Mayo et al., 2017)

« Add extra serutiny on key met-
rics for the firat 5 patisntz per
body sits

(continued next page)

the analyais is
parformsd
corrsctly to
avoid the
hazards of
sxpectation
biaz

= Monitor for

any unintsn-
tional chift in
clinical prac-
tice dus to
sattinga inthe
ML algorithm

= Maintain eval-

uation of plan
againat MD-
providsd
goals (plan-
ning chisc-
tivez) (Evans
atal. 2018;
Markz st al.
2013)

TYPE OF QA CONSIDERATIONS FOR THE CURRENT STATE

MACHINE

LEARNING PERFORMED BY  COMMISSIONING ROUTINE QA RISK BEING
APFLIGATION  REVIEWED BY MITIGATED
ML/AI an- Confirm function- = Defin if ML toola will be - Repsat a cubsst of the - Riak baing
hancss human  ality and under- applisd and i for all izsioning datasst mitigated iz
tasks: patisnt stand tha scops patisnts or by body sits * Confirm derivativs structuras. an incomsct
workflow, cuch  of whatie - Create a commissicning data- such as optimizati i

as preparation  automatsd a8t which includes manual ars consistsnt with thess by from targst or

for optimization

ML additive: * Evaluate with
dacision- wandor-aup-
making (EI plied dataset
Maga st al. = Define zize of
2018a) training and

teoting datasst

El Naﬁa, Moran, Ten Haken, The Modern Technolosi of Radiation Oncology, V4, Van Dyke

praparation of ths plan for
optimization and automated
preparation

+ Confirm reasonably concordant
results betwesn human and
automated creation

* Inzpsct the ovsriay of human
va. automated volumss to con-
finm expanaiona are comact

* Verify volumas for optimization
ars within 5% or 2 cc (for optic
and other amall structures)

= Partner with phyzicians 1o
datsrmine which diseass typss
and staging are appropriats for
the algorithm

= Assacs bassline vanation in
clinical practice among physi-
ciana within a practics, within a
ragiatry, or via publications
befors implementation

= Azsscs sensitivity of the output
of algorithme with training setz
across the epactrum of limited
variability to gignificant
variability

= Iz the algorithm supporting
impiemeantation of a national
practics standard?

* I3 the algorithm bsing ussd to
apply new acisnca in a clinical
trial?

humans [monthiy)

« Confirm that quality control
teps poat-application remain
in placs, such az review of the
final dozs distribution by MD
and physicist

= Confirm that the input and
sxpscted output ars conaistant
with the intant of the practice

+ Asasas the fraquency of patisnt
typs to datsrmins how oftsn the
training datasst should be
updated

+ Monitor ths relationship
betwesn decisions with prior
practice using Big Data
Analytical toolz whers available
by body site

OAR vol-
umes to cra-
ats optimi-
zation ziruc-
tures for dose
coverage or
=paring,
recpectively
* Maintain sval-
uation of plan
againat MD
provided
goalz (plan-
ning dirsctive)
(Evans stal .
2016; Marks
stal. 2013)




MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

REVIEW ARTICLE = ) Free Access

A review of explainable and interpretable Al with applications in
COVID-19 imaging

Jordan D. Fuhrman i Naveena Gorre, Qiyuan Hu, Hui Li, Issam El Naga, Maryellen L. Giger

First published: 18 November 2021 | https://doi.org/10.1002/mp.15359

Senior author: Maryellen L. Giger m-giger@uchicago.edu
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IVIL Accuracy versus interpretability 7

Proxy models

F 3
Table 1. The evaluation of the accuracy (A), interpretability (I) and explainability (E) of ML approaches in radiation outcomes
prediction
DL Basic ML Type A I E Improved ML Type A I E
HLV/SA/AM Logistic regression?2! 1P * hitid ikl GAZMS® P ot o0t o
M .| Ridge Regression22 P o o *
b Eﬁ LA58023 IP % k3% *%
E ld eal Elastic Net®** 1P ki ** *
Decision t 1P o eeet e CART* P ok - r——
S Approaches Decision tree
& Random Forests” NIP el * NA
& GBM9,33 NIP ko * NA
h .
MediBoost™** P bl i *
: o=— — — ==y — — — e — —
Q Naive BN IP * 3%k prees HBNSSAO P ok "ok o
& 35,37
< HBN-EK‘H P *k ook ok
Linear SVM NIP ha id * SVM-RBF# NIP wex * NA
24
SVM-LRBF* NIP il o *
- Deep learning®>® NIP ook * NA DL-HLV NIP bk . NA
> 48,55,56
=
d DL_SA52,57 /AM59,60 NIP % *t NA
o DL-DHLR®-% NIP ekl ok NA
m DL-LIME® NIP oooex NA
BN, Bayesian network; CART, classification and regression tree; DHLR, disentangled hidden layer representation; DL-AM, deep learning
withattention mechanisms; DL-HLV, deep learning withcombination of handcrafted features and latent variables; GBM, gradient boosting machine;
I HBN, hierarchical Bayesian network; HBN-EK, hierarchical Bayesiannetwork with expert knowledge; HLV, handcrafted features and latent variables;
> IP, interpretable; LASSO, least absolute shrinkage and selection operator; LIME, local interpretable model-agnostic explanation; ML, machine
learning; NIP, non-interpretable; SVM, support vector machine.

Low High
Interpretability

Luo, BJR-O, 2019




Deep learning interpretability approaches ™

Post-modeling proxy Models

| /; Flu | Explainer (' [-sneeze ]
i LIME
E N g headache || | —
headache
no fatigue no fatigue /
age iy
Model Data and Prediction Explanation Human makes decision
Interpretable
, B Components
Explainable Neural Networks (xXNN) based on Additive Index Models
r oA, ‘7]7 Y7 : J—
. X NG \. ) 7° -
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Why interpretability important? ™

Adversarial Attacks

Neural network

Classification
Eeanu Reeves

Original image Noise perturbation

Sylvester Stallone




ML/DL Interpretability

Accuracy

High

Low

DL- DL-
HLV/SA/AM DHLR/LIME

DL

Ideal
Approaches

\ 4

Low High
Interpretability

Luo, BJR-O, 2019
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Radiomics Interpretability for Liver Cancer (Grad-CAM)

Wei et al, Physic‘a Medica, 2021

Multi-omics interpretability for Lung Cancer
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Cui et al, IJROBP, 2021



Some Popular ML/DL platforms Q)

ML tools Google Interface Library
in Java (py/C) (python) (python)
‘h‘hj
lensort oy

o theano
Microsoft UdM -
Cognitive (python) Berkeley ( 0"/CC)
Toolkit (py/C) py 6 PyTorch

Facebook



https://www.cs.waikato.ac.nz/%7Eml/index.html

Top Deep Learning Libraries, 2018
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Source: KDnuggets




% TF1py

Install

t tensorflow as tf

hort numpy as np
matplotlib.pyplot as plt

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y test) = mnist. load _data()
X_train, x_test = x_train / 255.0, x_test / - 0

model = tf.keras.models.Sequential([
tf.keras. layers. Flatten()
tf.keras. layers. 1 =tf.nn.relu),
tf.keras. layers. 2}
tf.keras. layers. 10 =tf.nn.softmax)
1)

model. compile(

model.fit(x_train, y_train,
model.evaluate(x_test, y_test)
val_ 1055 val_acc= model.evaluate(x_test, y_test)

pre ction=model.predict([x_test])

p (prediction)
(np.argmax(prediction[0]))
(x_test[0])

ﬁtfmumﬂ
plt.imshow(x_test[0]
plt.show()

Resources ¥

Training .
6@@@@/6@@@@ —
Epoch 2/5
6@@@@/6@@@@ [::::::::::::::::::::::::::::
Epoch 3/5
6@@@@/6@@@@ [::::::::::::::::::::::::::::
Epoch 4/5

6@@@@/6@@@@ [::::::::::::::::::::::::::::
Epoch 5/5

6@@@@/6@@@@ [::::::::::::::::::::::::::::

Testing
10000/10000 [============—=—==—=—=—=—====
10000/10000 [========================———o=

0.06758721045646235 0.9795

1 0.9412

: 0.9754

: 0.9833

: 0.9887

: 0.9914




* There are different classes of ML/DL algorithms with varying accuracy

and interpretability levels and the choice of the proper algorithm(s) is
a problem and data dependent

Take home Messages

* Once an ML/DL algorithm is identified, a proper plan for training
(sample size), evaluation (statistics), and validation (testing) should
be developed to assure generalizability (out-of-sample)

* Acceptance and commissioning of ML/DL for medicine is in its

infancy, however, efforts are being made by public and private sectors
towards safe ML/DL implementation
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Useful ML/DL websites:
Tensorflow. CNTK.
https://www.kaggle.com/.  Scikit
Coursera: machine-learning



https://www.tensorflow.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.kaggle.com/
http://scikit-learn.org/stable/
https://www.coursera.org/learn/machine-learning
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