POINT-OF-CARE CAR-T MANUFACTURING

CELL COAST CONFERENCE 2024 OCT 26 2024

Natasha Kekre, MD, MPH, FRCPC Hematologist, TCT Program, The Ottawa Hospital

DECLARATION/COI

Honoraria/ad board: Novartis, Kite/Gilead, BMS

OBJECTIVES

- How do we define point-of-care manufacturing
- How can point-of-care manufacturing be rolled out to new sites
- Advantages and disadvantages of point-of-care manufacturing
- Cost of point-of-care manufacturing
- Pathways for use of point-of-care manufacturing: worldwide examples

POC MANUFACTURING - DEFINITION

Proximity to Patients

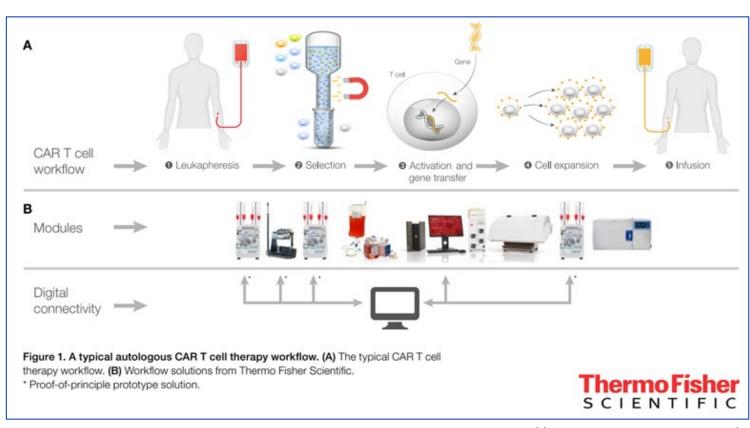
Closed, automated systems

MANUFACTURE CAR-T OR OTHER CELLULAR
VIA AN AUTOMATED, CLOSED-SYSTEM AT
ADJACENT SITES

Customization

IDING NEW MANUFACTURING SITES WITH RIGOROUS ND COMPREHENSIVE PROCESSES TO ENSURE A IDARDIZED, COMPARABLE PRODUCT AT ALL SITES

FULLY AUTOMATED SYSTEMS


- Fully automated process which eliminates any handling of the product during manufacturing
- One product on one machine at a time
- Handles cell separation, activation, and transduction
- 1) Miltenyi Biotec's CliniMACS Prodigy
- 2) Lonza's Cocoon

PARTIALLY AUTOMATED SYSTEMS

- Modular platforms where some steps can be automated
- Different processing devices for individual manufacturing steps
- Less product handling than manual systems
- Other examples include:
 - Celyad's CYAD-01 System
 - CellGenix's CellXpert System

ONBOARDING NEW SITES

Knowledge translation to new sites:

- (1) Gap Assessment: performed by first manufacturing centre to assess level of equivalence/appropriateness of site-specific technology and potential regulatory gaps.
- (2) Technology Transfer Package: provide the blueprint for how to implement the technology developed already to the recipient POC site.
- (3)Audit: Quality and Manufacturing personnel from chosen site perform an onsite audit of the recipient POC site.

ONBOARDING NEW SITES

How do we ensure that we are making a standard or consistent quality product across multiple sites?

- Split batch runs
- Site by site comparability studies
- All products need to meet basic benchmark of CofA

CENTRALIZED VERSUS DECENTRALIZED

Centralized Manufacturing

- Increased timelines due to transport, chain of custody
- Complex manufacture and delivery process
- Single manufacturing site: risk and vulnerability
- Products need to cross U.S. border

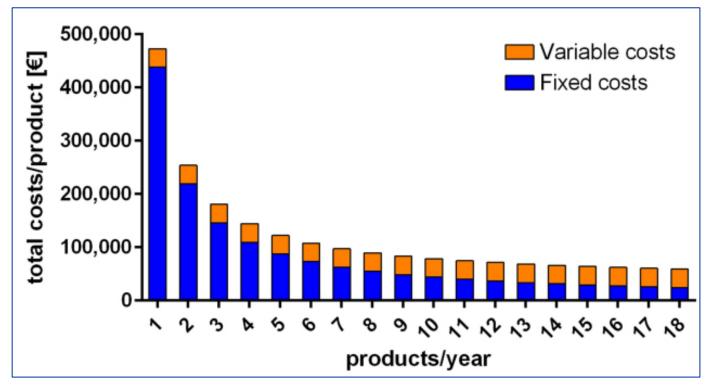
POC/Decentralized Manufacturing

- Often shorter manufacturing and vein-to-vein times
- Less risk of human error with automated processes
- Multiple sites: less risk and vulnerability
- Products made close to hospital

CENTRALIZED VERSUS DECENTRALIZED

Centralized Manufacturing

- High capacity for manufacturing
- Quality control of multiple facilities not needed
- Highly trained staff can train and work in one facility, avoiding duplication of labour


POC/Decentralized Manufacturing

- Limited to one product on one machine at a time, infrastructure to build capacity more limited
- Multiple facilities means multiple audits and quality teams
- Duplication of manufacturing and QA/QC members

WHAT ABOUT COST?

Costing model from German Cancer Research Center in Heidelberg, Germany in 2018

Cost per product: \$60,000 if 18 manufactured versus \$605,000 if 1 manufactured

Tao Ran and Stefan B. Eichmuller et al, Cancer Therapy and Prevention, 2020

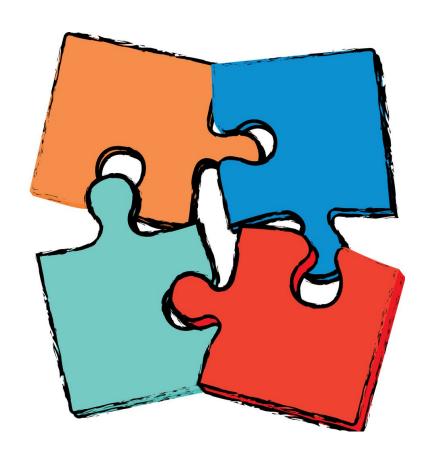
leukapheresis

cell selection

T cell activation

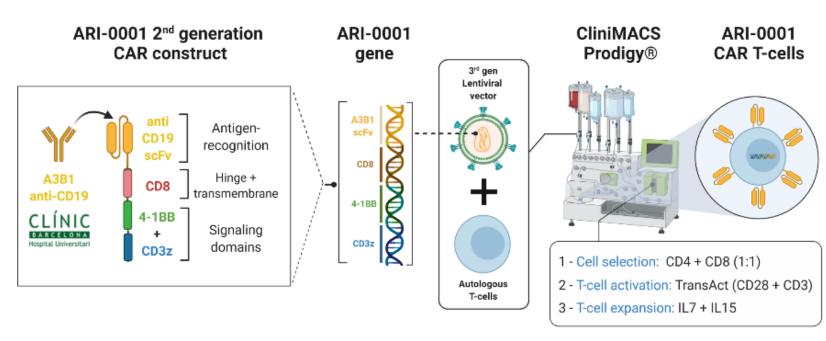
genetic modification

T cell expansion



harvest

WHAT ABOUT COST?


Critics would argue that manufacturing costs are just one piece of the puzzle, other factors to consider:

- Quality oversight and regulatory affairs, especially if multiple manufacturing sites
- Intellectual property management
- Sponsor oversight and liability
- Fixed and variable costs are jurisdictional, not generalizable
- Costs go down with scaling up manufacturing, but to what end

SUCCESS 1: SPANISH ACCESS AND AFFORDABILITY

- Hospital Exemption (allowing Spain to regulate the product for Spain while EMA application ongoing), dossier submitted to the Spanish agency in Feb 2020
- ARI-0001 cells (var-cel) approved for patients older than 25 years of age with R/R ALL (Feb 2021)
- Compassionate use program approved for patients outside currently approved indications
- Price & reimbursement agreed with Ministry of Health in June 2021 → €89,270 (97K USD)
- Phase 2 trial trial in 12 Spanish centres, specifically intended for adult patients with R/R ALL → finished recruitment in August 2023

Picture courtesy of Dr. Julio Delgado, ARI-0001 PI

Applying for conditional EMA approval

SUCCESS 1: SPANISH ACCESS AND AFFORDABILITY

Spain has proven that an academic not-for-profit network could provide affordable access to CAR-T outside of clinical trial

For academic networks to build and sustain an affordable and accessible CAR-T platform:

Upfront \$\$\$ (usually government)
Sustainable quality oversight
Agreement for reimbursement

FDA/Health Canada both in consultations now to understand how academic POC platforms can facilitate innovation, foster access and affordability and understand the hurdles associated with regulating and overseeing these platforms

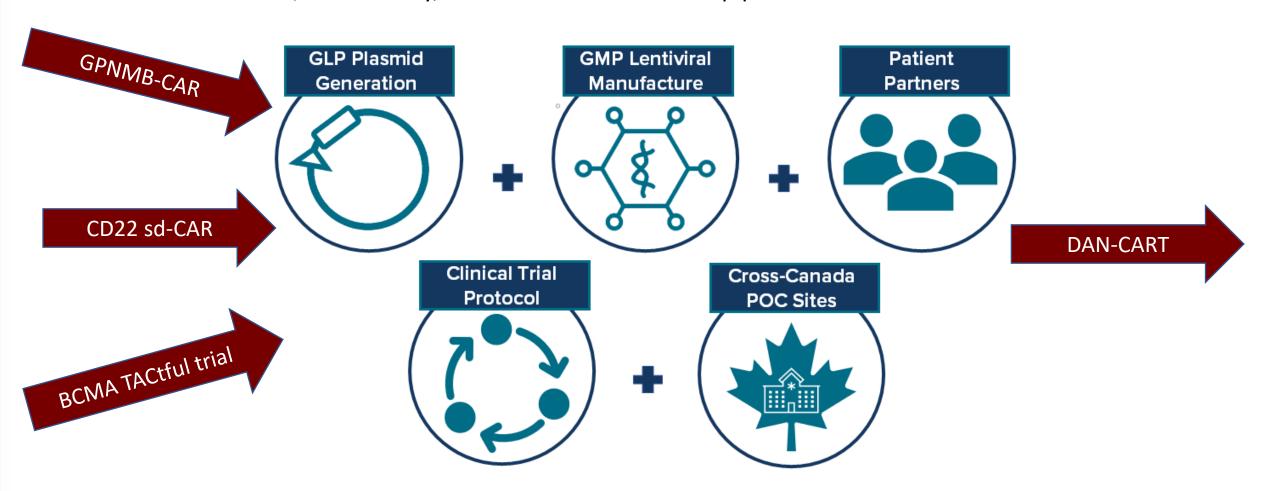
SUCCESS 2: ACCESS AND AFFORDABILITY

Decentralized
Manufacturing
(CLIC Pointof-Care Platform)

Decreased timelines and faster patient delivery

Ottawa, ON

Toronto, ON



Winnipeg, MB

In addition to access/affordability, this allowed us to build a pipeline for Canadian innovation to reach trial

SUCCESS 3: FACILITATING COMMERCIAL TRIALS

- Zamtocabtagene autoleucel, a first-in-class anti-CD19/anti-CD20 bispecific CAR was first tested in clinical trial at the Medical College of Wisconsin (MCW) under a Phase 1 investigator-initiated study
- This identified both a safe dose for future trials and defined the manufacturing process for this product, using the CliniMACS Prodigy fresh out-fresh in procedure
- This informed the development of two ongoing clinical trials in Europe and the United States with Miltenyi Biomedicine

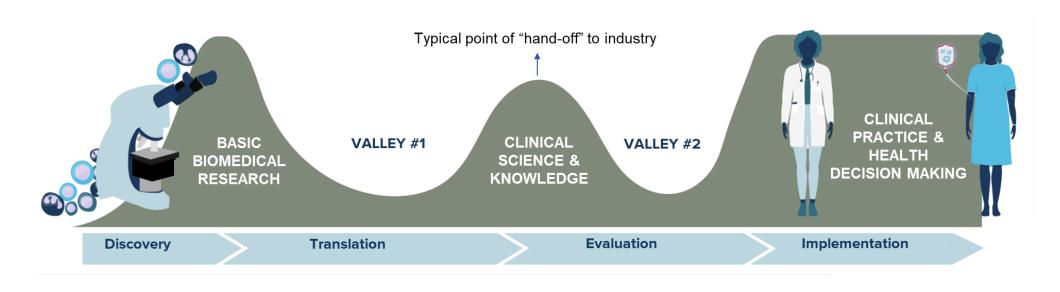
SUCCESS 4: FACILITATING COMMERCIAL TRIALS

- Stanford developed an anti-CD22 CAR construct for patients with relapsed DLBCL after CD19 CAR-T exposure
- This utilized the CliniMACS Prodigy for manufacturing as part of a Phase 1 IIS and identified a safe dose with promising efficacy
- Now translated to a now multi-center Phase II study led by CARGO Therapeutics
- Academic data advised the design, safety, and dose to utilize in the Phase II and should allow this product to reach market authorization.

SUCCESS 4: FACILITATING COMMERCIAL TRIALS

Academic centers are free to test novel concepts and can often initiate trials quickly generating early data to help support larger trials

Results of this work can then direct pharma companies allowing them to focus on high value assets for multicenter/registrational trials


CONCLUSIONS

- CAR-T therapy remains restricted in access in all parts of the world, including the USA
- USA has shown patients residing farther from treatment centers are less likely to receive CAR-T

- USA also showed increased mortality in patients with larger distances to treatment centres
- Point-of-care manufacturing can improve access and affordability
- Point-of-care can allow for feasible and fast first-in-human phase I/II trials


CONCLUSIONS

Point-of-care manufacturing can facilitate the peaks and valleys from discovery to implementation of CAR-T therapies

1) Decentralized biomanufacturing

2) Creating innovative health system adoption pathways

PROJECT TEAM AND ACKNOWLEDGEMENTS

Nicole Gierc

Bianca Loveless

Ryan Guagliano

Neru Mahendiran

OHRI - Clinical

Natasha Kekre **Harry Atkins** Michael Kennah Linda Hamelin Anne-Marie Clement Vanessa Lopez-Ozuna

OHRI-BMC

Jennifer Quizi John Bell Piriya Yoganathan Mathieu Crupi Liana Medynski

OHRI – Translation

Dean Fergusson Manoj Lalu Kednapa Thavorn Justin Presseau

Brad Nelson

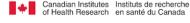
Julie Nielsen

BC Cancer - Victoria

Thank you to our patients!

Stephanie Michaud **Erin Bassett**

CAN CER FOUNDATION



Robert L Conconi FOUNDATION

Mhairi Sigrist Tyler Dyer

Kevin Hay

Narsis Afghari

Robert Holt

Miruna Balasundaram

Lisa Dreolini

Vancouver - VGH

Claudia Piechnik

Hannah Cherniawsky

Scott Brown

Kevin Song

Maria Chapman Shanti Bell **Anestis Tzanidis** Michael Gignac Stephen Zaiatc Adiba Salam

