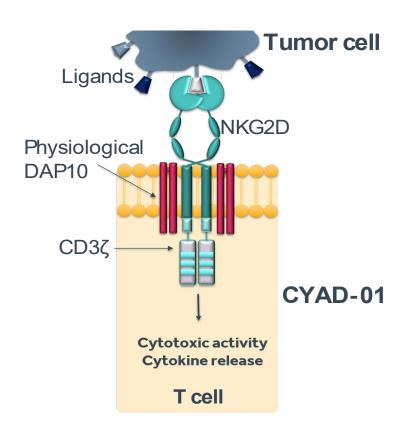
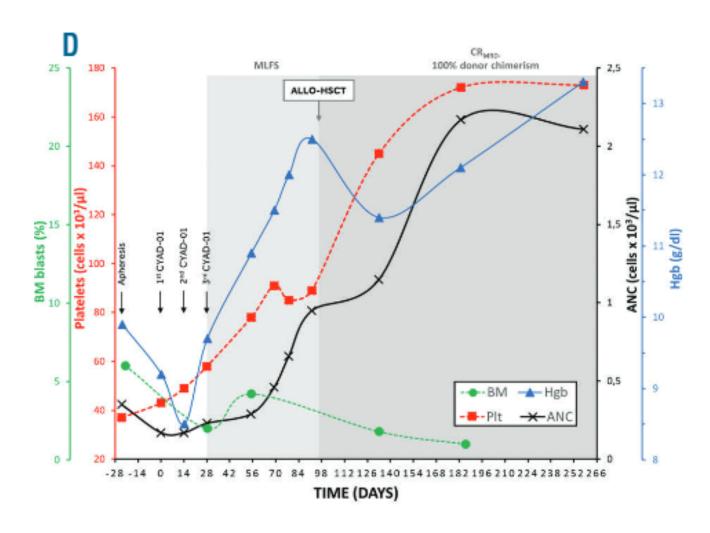
Cellular Therapies for Myeloid Malignancies 2024 Cell Coast Conference

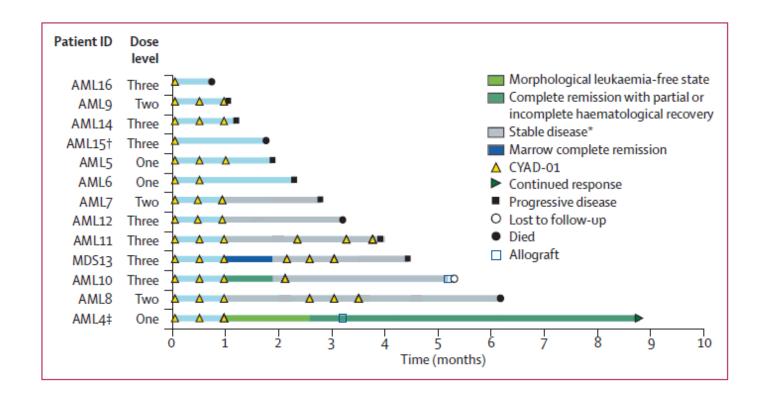
David A. Sallman, MD
Associate Member, Myeloid Section Head
Department of Malignant Hematology
Moffitt Cancer Center
david.sallman@moffitt.org


Disclosures


I disclose the following financial relationship(s):

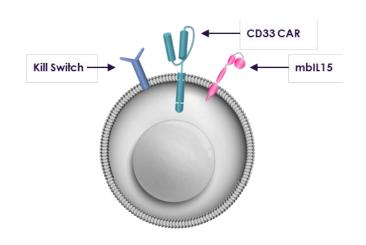
- Agios, Advisory Board or Panel, Speaker's Bureau
- Servier, Advisory Board or panel
- Jazz, Grants/Research Support
- Incyte, Speaker's Bureau
- Novartis Advisory Board or Panel,
- Abbvie, Advisory Board of Panel,
- Intellia Advisory Board or Panel
- BMS Advisory Board or Panel, Speakers Bureau
- Janssen Steering Committee
- Curis Advisory Board or Panel
- Shattuck Labs Advisory Board or Panel
- Aprea Research Support
- Gilead Advisory Board or Panel
- Syros Advisory Board or Panel
- Akesobio Consulting

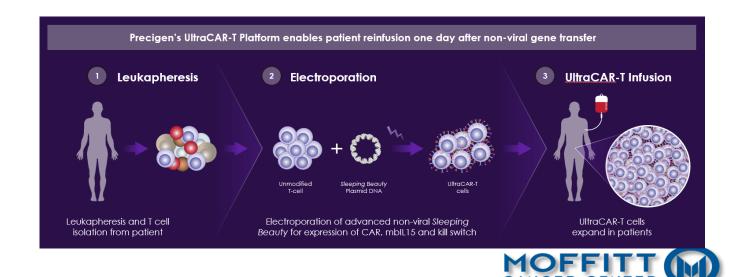
Case Report – CYAD-01 NKG2D CAR



Efficacy in AML/MDS Patients

	Dose level one (n=3)	Dose level two (n=3)	Dose level three (n=7)		
Complete remission with partial or incomplete haematological recovery or marrow complete remission	1 (33%)	0	2 (29%)		
Stable disease	0	2 (67%)	2 (29%)		
Progressive disease	2 (67%)	1 (33%)	2 (29%)		
Non-evaluable*	0	0	1 (14%)		
Data are n (%). *Patient at dose level three with a dose-limiting toxicity upon first CYAD-01 administration was withdrawn from study treatment and did not proceed to any disease assessment.					

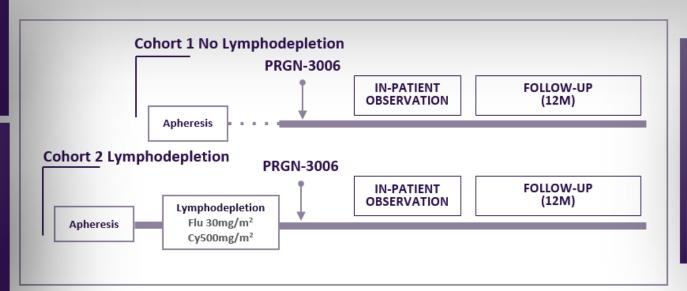



CRS occurred in 7 out of 15 pts patients (2 G3 and 1 G4); no neurotoxicity

PRGN-3006 UltraCAR-T: CD33 CAR Approach

- Non-viral gene delivery via electroporation of Sleeping Beauty plasmid
- Multigenic CAR-T product with expression of CAR, kill switch and membrane bound IL-15 (mbIL15)
- Overnight UltraCAR-T manufacturing process eliminates the long wait times associated with conventional autologous CAR-T

PRGN-3006 UltraCAR-T Phase 1 Dose Escalation **Clinical Trial Design**


FIRST-IN-HUMAN, DOSE ESCALATION STUDY EVALUATING SAFETY AND EFFICACY OF A SINGLE DOSE OF PRGN-3006

ELIGIBILITY

- r/r CD33+ AML, high risk MDS or with >5% blasts
- ALC > 0.2 k/μL
- Prior HSCT allowed

STUDY OBJECTIVES

- PRIMARY: Evaluate the safety and determine the MTD of PRGN-3006 delivered intravenous (IV) infusion either with or without lymphodepletion
- SECONDARY : Evaluate in vivo persistence and anti-tumor activity of PRGN-3006

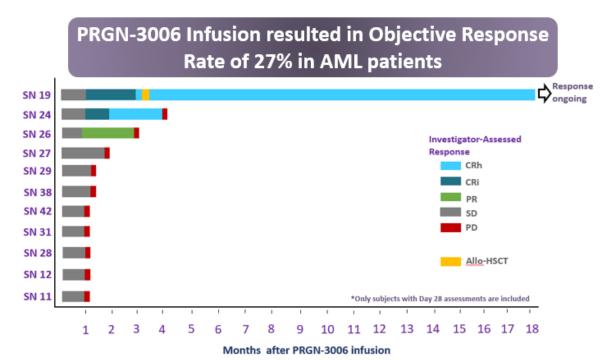
Dose Level (DL) Dose Level (Cells/kg) $>3x10^4$ to $<1x10^5$ DL1 DL2 $>1x10^5$ to $\leq 3x10^5$ $>3x10^5$ to $\leq 1x10^6$

DL3

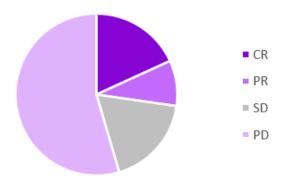
SAFETY MONITORING

Management via ASTCT

DISEASE RESPONSE

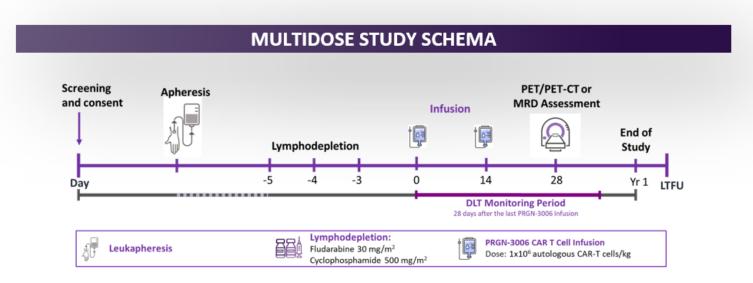

- ELN Criteria (AML)
- IWG 2006 criteria (MDS)

CORRELATIVES

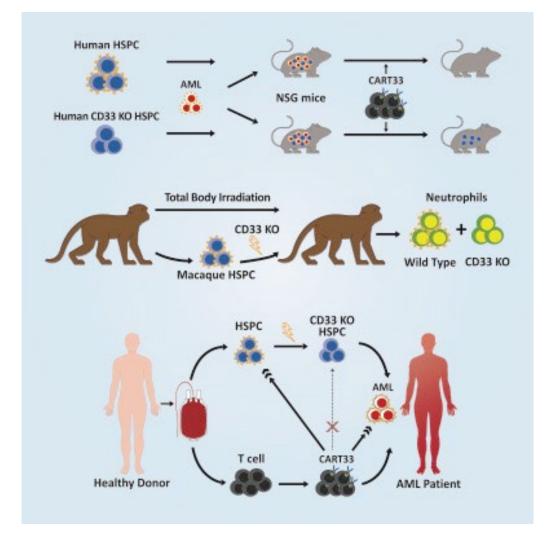

- PRGN-3006 expansion
- Immune phenotype
- Biomarkers

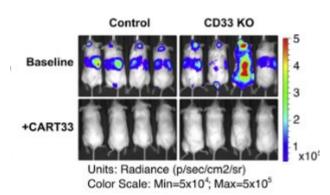
A Single Infusion of PRGN-3006 Leads to Objective Responses in AML Patients; No Response in MDS/CMML

PRGN-3006 Infusion resulted in Objective Response
Rate of 27% in AML patients

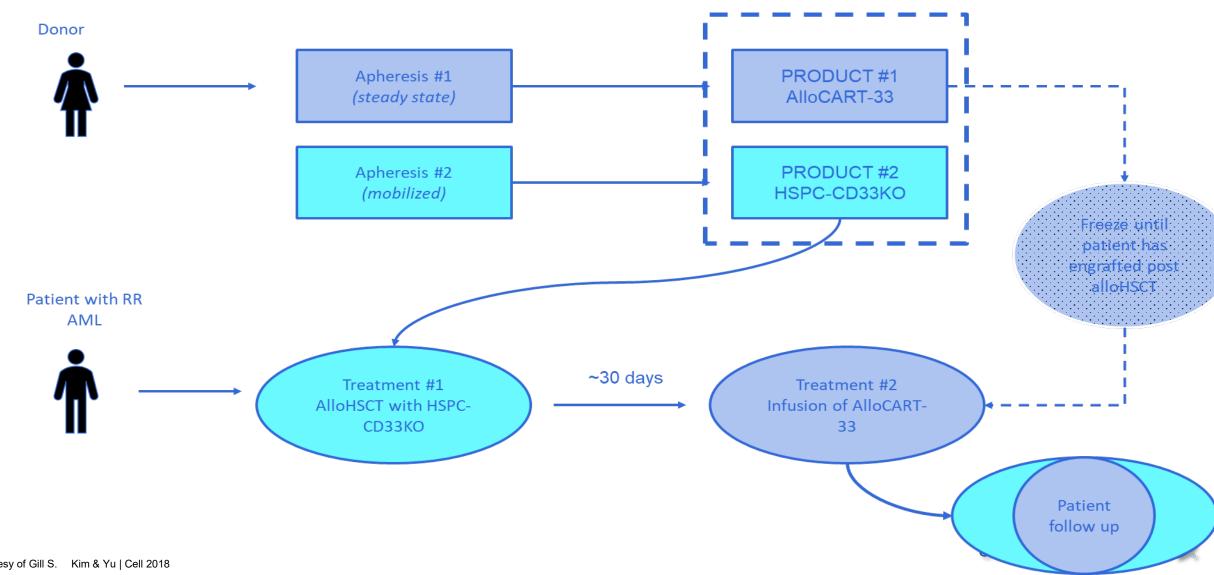

No Objective responses were observed in patients with MDS, which were treated at the highest dose level

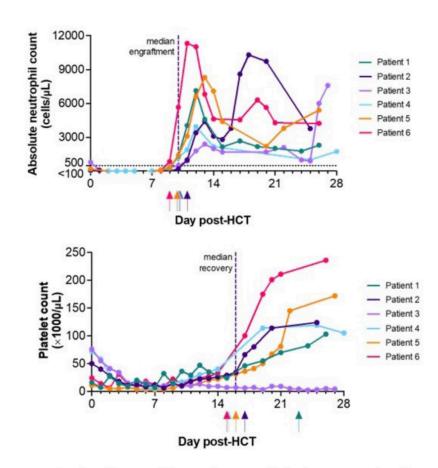
	AML	MDS	СММГ
Disease Control Rate (at D28)	45% (5/11)	3/3 (100%)	0/1
Objective Response Rate (ORR)	27% (3/11)	0/3	0/1


PRGN-3006 UltraCAR-T Dose Expansion Clinical Trial Design


- PRGN-3006 was well-tolerated with no DLTs reported to date and minimal neurotoxicity observed.
- A single infusion of PRGN-3006 cells at doses as low as 1 x 10⁵ cells/kg resulted in objective responses in patients infused following lymphodepletion
- PRGN-3006 cells were able to expand and persist in patient peripheral blood and bone marrow even in the absence of lymphodepletion
- 1 x 10⁶ cells/kg PRGN-3006 CAR-T cells with lymphodepletion is currently being evaluated in the dose expansion phase
 - Patients can receive two infusions of PRGN-3006 at the discretion of investigators
 - There is no requirement for additional lymphodepletion in repeat dose patients due to the demonstrated ability of PRGN-3006 to expand in the absence of lymphodepletion

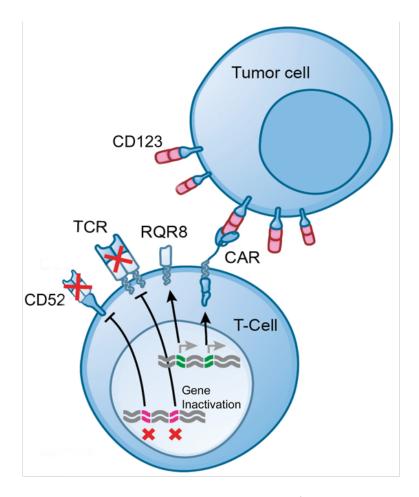
CD33 KO in Stem Cell Product – Leukemia Specific Antigen

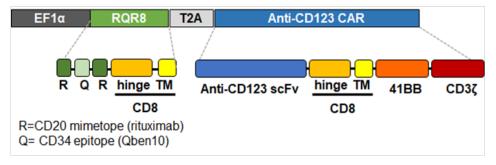



CD33-CLL1 Multiplex Deletion similar Data *in vitro*

CD33 KO in Stem Cell Product – Leukemia Specific **Antigen**

Tremcell (CD33KO stem cell product) with Successful Engraftment




Figure 1. Kinetics of neutrophil engraftment and platelet recovery (n=6). Arrows denote time of individual patient neutrophil engraftment and platelet recovery.

- Current study follows with GO (low dose)
- Allo CART for CD33 underway, no data presented to date.
- Ultimate goal likely above followed by allocart, potentially for high risk vs MRD+ patients.

UCART123: Allogeneic "off-the-shelf" T cell product

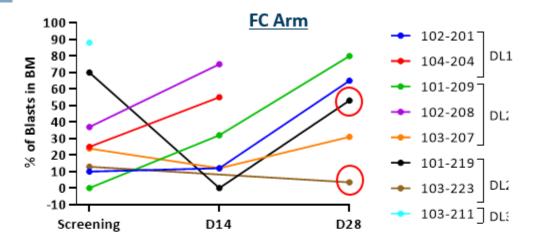
UCART123:

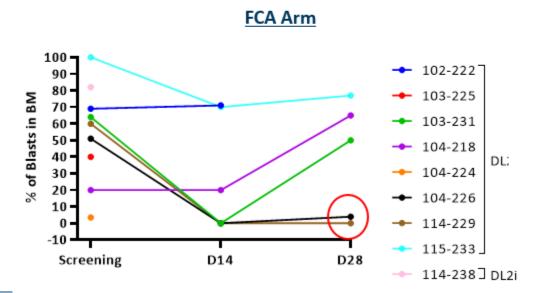
- ✓ Second-generation CAR targeting CD123
- ✓ Mouse-derived scFv
- ✓ Derived from healthy donor T cells
- \checkmark Reduces risk of GvHD (TCR K/O and TCRαβ-purification)
- ✓ CD20 mimotope for rituximab "safety switch"
- ✓ Alemtuzumab resistance (CD52 K/O)
- ✓ Available "off the shelf"
- ✓ Manufactured at large scale

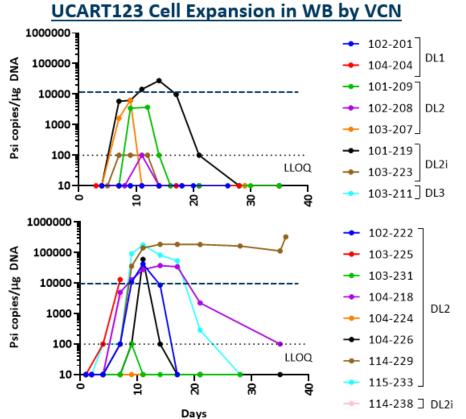
CAR, chimeric antigen receptor; GvHD, graft-versus-host disease; K/O, knock-out; scFv, single-chain variable antibody fragment; TCR, T-cell receptor.

UCART123v1.2 - Serious TEAEs (All Cause – FC + FCA)

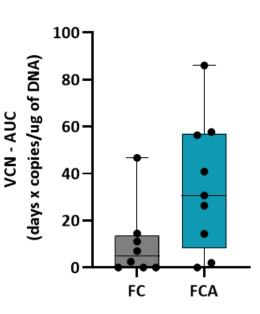
	F	С	FC	CA	FC +	FCA
Serious TEAE, n (%)	FC Total [n=8] DL1=2; DL2=3; DL2i=2; DL3=1		FCA Total [n=9] DL2=8; DL2i=1		Total patients N=17*	
Serious TLAL, II (70)	Any grade	Gr ≥3	Any grade	Gr≥3	Any grade	Gr≥3
CRS	3	2	2	2 °	5	4
ICANS	1	1	0	0	1	1
Pneumonia	1	1	1	1	2	2
Pneumonia fungal	2	2	0	0	2	2
Febrile neutropenia	0	0	1	1	1	1
Fungemia	0	0	1	1	1	1
Hemorrhage intracranial	0	0	1	1	1	1
Large intestinal hemorrhage	1	1	0	0	1	1
Pericardial effusion	1	1	0	0	1	1
Septic shock	1	1	0	0	1	1

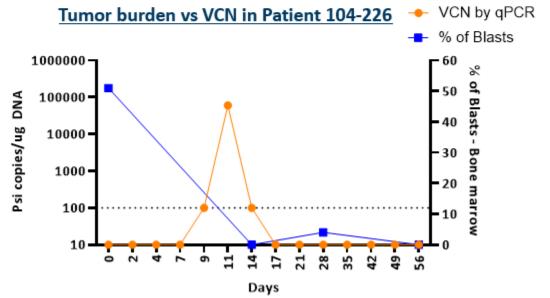

DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; TEAE, treatment-emergent adverse event; CRS, cytokine release syndrome; ICANS, immune effector cell associated neurotoxicity syndrome




^{*} As of Oct. 10, 2022, 18 patients received LD, 17 received UCART123v1.2

² Grade 5 events related to CRS


Efficacy and Kinetics

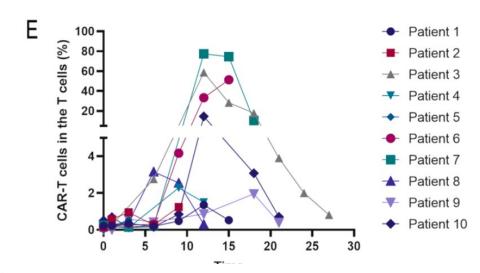


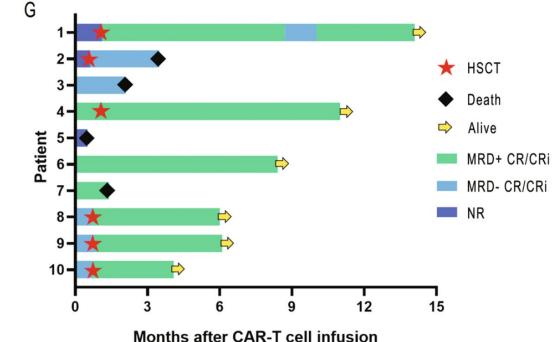
Patient Achieved a Durable MRD Negative CR without DLI/2nd allo

Clinical Characteristics	
Age, Race, Sex	64 year old white female
ECOG	1
ELN 2017 Classification; WHO Classification	Adverse risk; AML with myelodysplasia-related changes
Cytogenetic and Molecular Abnormalities	45,XX,-7,t(10;12)(q24;p13)[5]; IDH1, EZH2
Number of prior treatments	5 - including allogeneic HSCT 2016
Past Medical History	MDS, 2011; Focal nodular hyperplasia of the liver, 2016

Response Summary	BM Biopsy Blast %	BM Aspirate Blast %	MRD	ELN Response
Screening Day -14	51%	Not done		
Day 14	0%	Not done		
Day 28	3.8%	4%	Pos 0.6%	CRi
Day 56	2.8%	0%	Neg	CR
Day 84	0%	0%	Neg	CR
FU 1, Day 181	2%	0%	Neg	CR
FU 2, Day 270	1%	0%	Neg	CR
FU 3, Day 365	0%	0%	Neg	CR

MDS myelodysplastic syndrome; HSCT Hemopoietic stem cell transplant; MRD minimal residual disease; CRi compete response with incomplete hematologic recovery; CR complete response


Other Studies Targeting CD123 in Relapsed/Refractory AML


- Auto CD123 CAR with optimized IgG4 CH2CH3 linker a CD28 co-stimulatory domain, and a CD3 zeta
 - 1/6 Cri (bridged to 2nd allo day day +70).
- Unicar-T CD123 in R/R AML
 - Modular, universal CAR-T treatment, consisting of a universal CAR-T cell with CD28 costimulatory domain (UniCAR-T) and a CD123 targeting module (TM).
 - TM binds to the CAR-T cell via a peptide tag derived from the human La protein.
 - 14 pts treated, CRS 12/14 (1G3); 1 G2 CRES. 1 DLT (reversible with stopping TM).
 Treatment has been safe through 500M CAR-T Cells
 - 2 CRi responses (14%), 10 pts with blast reduction. DL not associated with response
- Allo-CD123 CART entering clinic by 2025

CLL1 CAR-T in Adults

- LD with cyclophosphamide (500 mg/m²) and fludarabine (30 mg/m²)
- 1–2 × 106 CAR-T cells/kg targeting
 CLL-1 with 41BB co-stim
- 100% CRS, 6/10 high grade, no CRES
- Severe cytopenias all pts, 7/10 with CR/CRi although unclear if ablated, only 1 pt alive and in remission without transplant.

Safety and Efficacy of CD33-CLL1 Compound CART

- Autologous CART in heavily pretreated R/R AML
- Flu/Cy at 30mg/m² and 300mg/m², respectively
- Cell dose 1-3x10⁶/kg
- 7/9 with MRD negative response by multiparameter flow cytometry
- 1 of 2 non-responding pts were CLL1 negative
- 6 pts to allo-HSCT

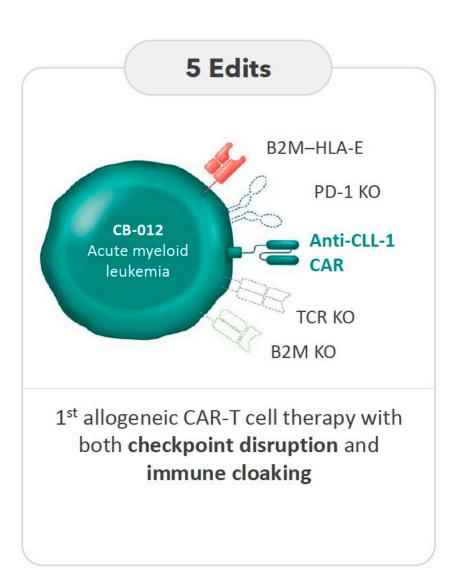
	Age/sex Dx	Prior treatment	BM Blast%	CD33/CLL1 expression	Cytogenetic /molecular	Origin of car-t cells	CAR-T Dose	response s
P1	44/m AML	4 chemo	47%	CD33*/CLL1*	ASXL1,TP53	auto	0.7x10 ⁶ /kg	MRD
P2	6/f JMML-AML	5 chemo	81%	CD33-/CLL1-	Complex FLT3-ITD	auto	2x10°/kg	MRD.
P3	23/F CML AP	3 TKIs for 5 years	1.63%	CD33*/CLL1*	t(9;22) T315mut	auto	1.1x10 ⁶ /kg	MRD.
P4	43/F M2	3 chemo	42%	CD33*/CLL1*	NK FLT3-ITD	auto	2.8x10 ⁶ /kg	MRD.
P5	32/F AML	3 chemo	19%	CD33*/CLL1*	NK MLL	auto	2x10°/kg	MRD-
P6	48/F AML	5 chemo	94%	CD33*/CLL1*	t(8;21) AML1/ETO CKIT	auto	1.3x10 ⁶ /kg	MRD-
P7	23/F AML	4 chemo	74%	CD33*/CLL1*	t(8;21) AML1/ETO CKIT	auto	1x10 ⁴ /kg	NR
P8	27/F AML	5 chemo	93%	CD33°/CLL1	NA MLL AF9	auto	2.3x106/kg	NR
P9	42/f AML	2 chemo	7%	CD33*/CLL1+	T(3;3) RUNX1	MSD donor	3.7x10 ⁶ /kg	MRD-

Kite-222 Dose Escalation

Table 2. Dose Cohorts

	Number of Anti-CLL-1 CAR T Cells ^{a,b}			
Dose Cohort	<50 kg	≥50 kg		
Dose-escalation Cohort 1	2 x 10 ⁷	3×10^{7}		
Dose-escalation Cohort 2	7 x 10 ⁷	1 x 10 ⁸		
Dose-escalation Cohort 3	2 x 10 ⁸	3 x 10 ⁸		
Expansion Cohort	The optimal dose for the expansion cohort will be determined by the SRT			

Recruitment Status	Actual Primary Completion Date	Actual Study Completion Date
Terminated	2024-05-18	2024-05-18


Study was terminated due to futility

CB-012 CLL1 Allo CART for r/r AML

Key attributes	CB-012	Other allogenic CAR-Ts for AML
Cas12a chRDNA editing for enhanced genomic integrity Reduced off-target editing and enhanced insertion rates	0	\otimes
TRAC gene knockout (KO) Eliminates TCR expression, reduces GvHD risk	0	Varies
Human anti-CLL-1 CAR site-specifically inserted into TRAC gene Eliminates random integration, targets tumor antigen	\odot	Varies
B2M gene KO Reduces HLA class I presentation and T cell-mediated rejection	0	\otimes
B2M-HLA-E-peptide fusion site-specifically inserted into B2M gene Blunts NK cell-mediated rejection	\odot	\otimes
PD-1 KO for enhanced antitumor activity Potentially better therapeutic index via initial tumor debulking	\odot	\otimes

CB-012 uses a potent, fully human anti-CLL-1 scFv¹ with a CD28 costimulatory domain

CB-012 r/r AML Study Design

Adults with
Relapsed/Refractory or
MRD positive
AML

Part A

3+3 dose escalation standard 3+3 design (N~40)

Dose levels 1-5

Primary objective:

Safety/tolerability, identify MTD/RDE

Secondary objective:

Preliminary efficacy, PK/PD

Part B

dose expansion (N~30)

Primary objective:

Efficacy, identify RP2D

Secondary objective:

Safety/tolerability, PK/PD

Lymphodepletion (LD):

Fludarabine 30 mg/m²/d and cyclophosphamide
 750 mg/m²/d for 3 consecutive days (Days -5 to -3)

Each patient receives a single flat-fixed dose:

- Dose level 1 (Cohort 1): 25 × 10⁶ viable CAR⁺ cells
- Dose level 2 (Cohort 2): 75 × 10⁶ viable CAR⁺ cells
- Dose level 3 (Cohort 3): 150 × 10⁶ viable CAR+ cells
- Dose level 4 (Cohort 4): 300 × 10⁶ viable CAR⁺ cells
- Dose level 5 (Cohort 5): 400 × 10⁶ viable CAR+ cells

.

CLEC12A/CLL1 Expression in CMML

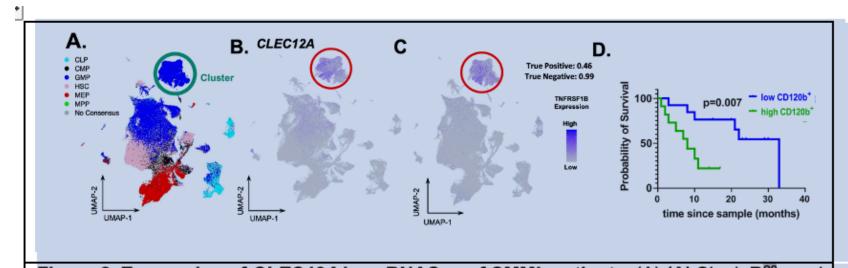


Figure 2. Expression of CLEC12A in scRNASeq of CMML patients. (A) (A) SingleR²⁰ used to determine cell type assignment using published bulk RNA sequencing references from sorted cells. Clus2 was enriched for GMP cell type assignment. (B) Expression of CLEC12A (CLL1) in Clus 2 cells. (C) COMET²¹ analysis identified CD120b (TNFRSF1B) as the optimal flow marker of Clus2. (D) Overall survival in validation cohort of CMML patients with high CD120b⁺ GMP versus low. See Ferrall-Fairbanks, et all Blood Cancer Discovery 2022 for details.

A Phase 2, Multicenter, Open-Label Study of CB-012, a CRISPR-Edited Allogeneic Anti-CLL-1 CAR-T Cell Therapy in Patients with Relapsed/Refractory Chronic Myelomonocytic Leukemia or Juvenile Myelomonocytic Leukemia.

- CMML patients will be treated at the RP2D determined by the ongoing CB12A trial in adults with AML
- Patients with JMML will be treated at the equivalent cell/kg-adapted dosing of the R2PD as is done in pediatric cell therapy trials

• Primary:

To describe the efficacy of CB-012 in patients with relapsed/refractory CMML or relapsed JMML.

Secondary:

To characterize the pharmacokinetics and pharmacodynamics of CB-012 in r/r CMML and relapsed JMML. To further evaluate the safety and tolerability of CB-012 therapy in patients with r/r CMML and relapsed JMML.

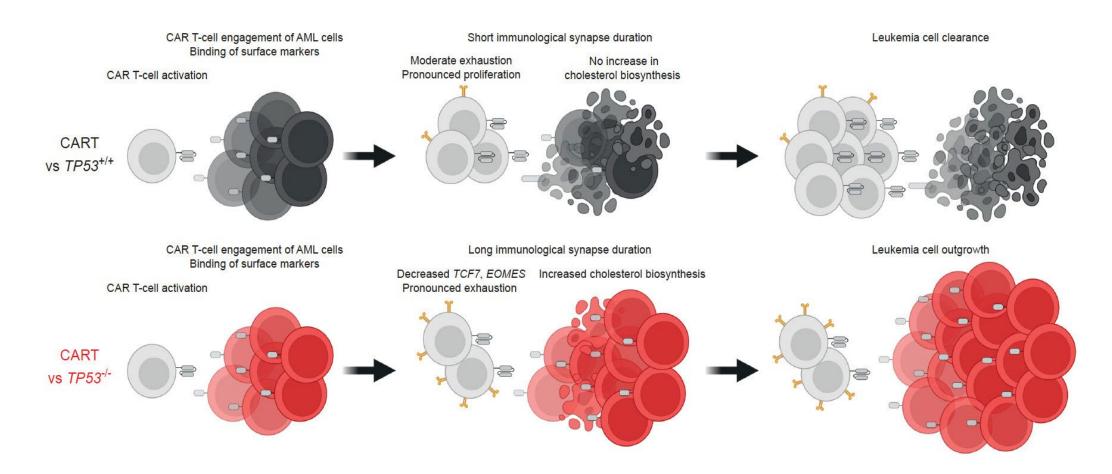
Exploratory:

To further characterize the pharmacodynamics of CB-012 and biomarkers of immune function and their relationship with tumor activity and burden

To determine whether replication competent AAV is present in patients who received CB-012 To assess the immunogenicity of CB-012

Challenges/Thoughts

- The rigorous FDA rules with staggered enrollments/etc.. Greatly slowing progress in field, taking years for phase 1 studies to be completed
- How do we more quickly evaluate CART with low burden disease patients,
 MRD positivity, CART production with more fit T-cells prior to multiple lines of therapy.
- What is optimal conditioning and bridging strategy
- Optimal endpoints



Questions to Address

- What is Target Expression on LSC, bulk BM bone marrow blasts for MDS, CMML and AML patients based on treatment?
 - HMA ven failure vs IC failure vs other
 - Are There differences based on molecular (e.g. TP53 vs other) and/or disease subsets (e.g. secondary AML, AML-MRC)
- What combination of surface antigen targets with CLL-1/CD33/other would cover 100% of LSCs and prevent antigen escape?
- At the single cell level in LSCs for patients with MRD + disease after either HMA + ven for Intensive therapy, what is CLL-1/CD33/other positivity and MFI and what combination with other targets would eradicate 100% MRD
- How do t-cell subset change based on MRD positivity vs past therapies
 - Important both from auto-CAR perspective and immunosuppressive microenvironment

TP53 Deficiency in AML Confers Resistance to CAR T-Cells

Cholesterol pathway identified as a potential therapeutic vulnerability of TP53-deficient AML

Acknowledgements

Moffitt Cancer Center

Rami Komrokji
Eric Padron
Jeffrey Lancet
Amy McLemore
Amy Aldrich
Kathy McGraw
Lisa Nardelli
Seongsuk Yun
Jessica Cerar

Najla Ali
Ling Zhang
Qianxing Mo
Jiqiang Yao
Kendra Sweet
Chetasi Talati
Nelli Bejanyan
Hany Elmariah

Precigen

Amy Lankford Helen Sabzevari

Celyad

Frederic Lehmann

<u>UPenn</u>

Saar Gill

Cornell

Gail Roboz

AML CAR WOKKING GROUP

AA&MDSIF • MDS CLINICAL RESEARCH CONSORTIUM

Supported by the Edward P. Evans Foundation

mds foundation inc.

