Predictors of Toxicity and Response to CAR T-cell Therapy in Multiple Myeloma

Doris K. Hansen, MD

H. Lee Moffitt Cancer Center & Research Institute Department of Blood & Marrow Transplant & Cellular Immunotherapy

October 18th, 2025 Cell Coast Conference Tampa, FL

Disclosures

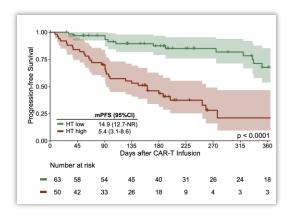
Research funding

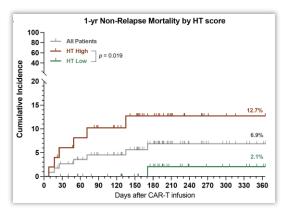
- ❖ Bristol Myers Squibb/Celgene, Janssen, Adaptive Biotechnologies, Kite Pharma, and Karyopharm
- ❖ Additional funding from Pentecost Myeloma Research Center, Myers Foundation, Schulze, and M-CARES awards (pilot grants) via Moffitt Cancer Center
- NCI/R01CA281756-01A1

Consultancy

❖ Bristol Myers Squibb, Janssen, Legend Biotech, Karyopharm, Kite Pharma, AstraZeneca, and Pfizer

Objectives

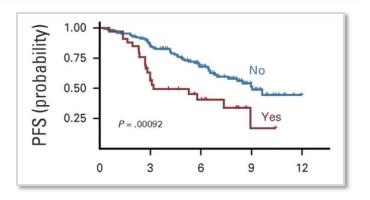

- ❖Discuss development of a pre-apheresis predictive model for BCMA CAR-T (SCOPE-MM)
- ❖ Discuss predictors of toxicity, particularly NINT, and durable response
- ❖ Discuss talquetamab as a bridge to BCMA CAR-T


Can we predict which RRMM patient will respond or develop toxicity to BCMA CAR-T?

CAR-HEMATOTOX Score:

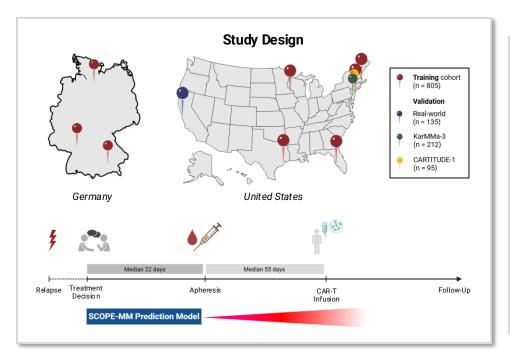
- Entity agnostic; validated in relapsed myeloma
- Predicts toxicity and survival in RRMM after CAR-T at lymphodepletion

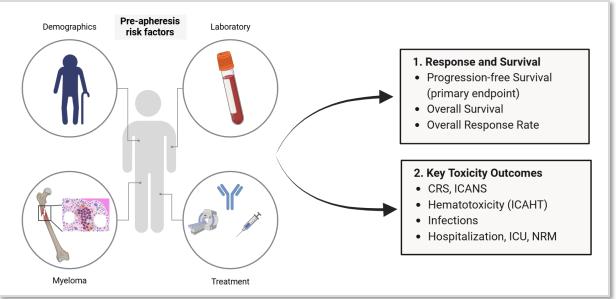
Features	0 Point	1 Point	2 Points
Platelets [G/l]	> 175	75-175	< 75
ANC [per ul]	> 1200	< 1200	-
Hemoglobin [g/dl]	> 9.0	< 9.0	-
CRP [mg/dl]	< 3.0	> 3.0	> 2000
Ferritin [ng/ml]	< 650	650-2000	> 2000



MyCARe Model:

- Built on RRMM cohort with myeloma-specific variables
- Predicts survival in RRMM after CAR-T at lymphodepletion

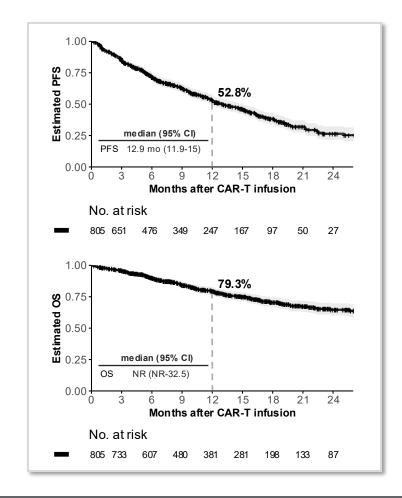

Factor	HR	95% CI	P	Score
EMD or PCL present	1.92	1.30 to 2.82	<.001	1
High-risk cytogenetics	1.95	1.31 to 2.92	.001	1
Ferritin > NL (sex-/age-adjusted)	1.59	1.07 to 2.37	.02	1
Lenalidomide refractoriness	1.69	1.02 to 2.82	.04	1
MyCARe risk				
Low (score 0-1)	Ref			
Intermediate (score 2-3)	3.27	1.87 to 5.72	<.001	
High (score 4)	7.89	4.21 to 14.79	<.001	



SCOPE-MM: Main Study Objectives, Study Design and Data Collection

Study Aims:

- To identify early predictors of CAR-T response and toxicity in RRMM patients.
- 2. To develop a **risk stratification model at a pre-apheresis** time point that is product-agnostic and can identify high-risk candidates for toxicity and adverse treatment outcomes.



Training Cohort of 805 real-world patients

The training cohort showed classic features of a RRMM patient population, including a high prevalence of **EMD lesions** and **high-risk cytogenetics**, and being **heavily pre-treated and penta-refractory**.

Entire cohort	lde-cel	Cilta-cel
(11 – 605)	(11 – 5 14)	(n = 291)
63 (31-88)	66 (34-88)	63 (31-86)
43.5	42.4	45.4
16.9	18.2	14.6
82.7	81.3	85.2
31.8	30.8	33.4
63.2	59.9	68.8
18.5	19.2	17.3
215 (181-259)	218 (181-259)	209 (180-257)
3.9 (3.6-4.2)	3.9 (3.5-4.1)	4.0 (3.7-4.2)
3 (2.3-4.2)	3.1 (2.3-4.5)	2.8 (2.2-3.9)
5 (4-7;1-20)	5 (4-7;2-20)	5 (4-6;1-14)
30.4	32.7	26.3
11.9	13.8	8.6
78.1	77.8	78.7
	(n = 805) 63 (31-88) 43.5 16.9 82.7 31.8 63.2 18.5 215 (181-259) 3.9 (3.6-4.2) 3 (2.3-4.2) 5 (4-7;1-20) 30.4 11.9	(n = 805) (n = 514) 63 (31-88) 66 (34-88) 43.5 42.4 16.9 18.2 82.7 81.3 31.8 30.8 63.2 59.9 18.5 19.2 215 (181-259) 218 (181-259) 3.9 (3.6-4.2) 3.9 (3.5-4.1) 3 (2.3-4.2) 3.1 (2.3-4.5) 5 (4-7;1-20) 5 (4-7;2-20) 30.4 32.7 11.9 13.8

The **overall response rate was 81.3%**, with a median PFS of 12.9 months and a median OS that was not reached.

The final model:

Stratification of CAR-T Outcomes at Pre-Apheresis Evaluation in Multiple Myeloma (SCOPE-MM)

Risk groups were defined using partitioning models based on similar hazard ratios.

SCOPE-MM < 2 no

HR
event/total
patients

SCOPE-MM < 5

1.6
203 / 310
39%

SCOPE-MM < 3

SCOPE-MM < 3

1.5
184 / 290
36%

72 / 126

112 / 164

19 / 20 2%

≥ 3 Points

High Risk

101 / 216

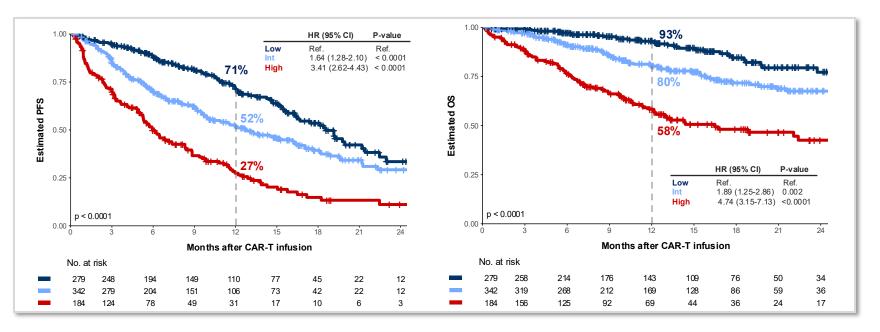
1-2 Points

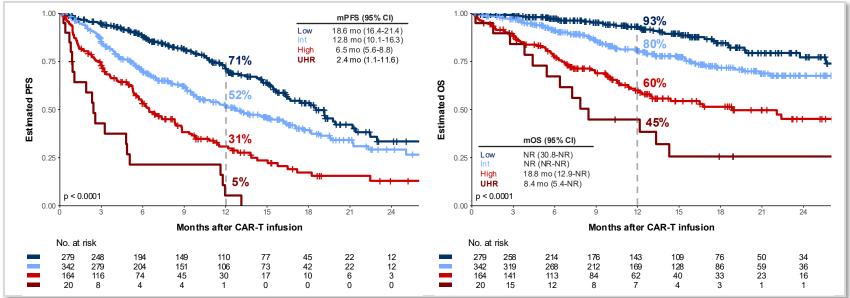
Intermediate Risk

We developed the **point-based**, **weighted SCOPE-MM model**, assigning one point each for BMPC ≥50%, history of EMD, and serum LDH above the upper limit of normal, and two points each for high pre-apheresis CAR-HEMATOTOX score and prior BCMA exposure.

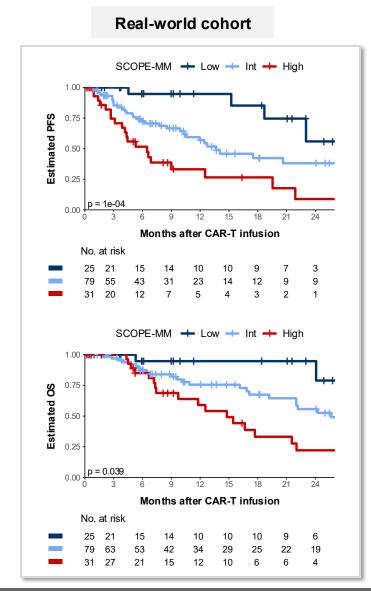
	SCOPE-MM	Points			
CAR-HEMATOTOX Components	Components	0	+1	+2	
Platelets [G/I] 0-2 points ANC [G/I] 0-1 points Hgb [g/dI] 0-1 points CRP [mg/dI] 0-1 points	CAR-HEMATOTOX Category*	Low Risk	-	High Risk	
Ferritin [ng/ml] 0-2 points	Prior BCMA Exposure	No	-	Yes	
High-Risk ≥ 3 points	BMPC ≥ 50%	No	Yes	-	
	History of EMD	No	Yes	-	
	Serum LDH >ULN	No	Yes	-	
	SCOPE-MM Low SCOPE-MM Intermediate SCOPE-MM High		0 points		
			1-2 points		
			≥ 3 points		

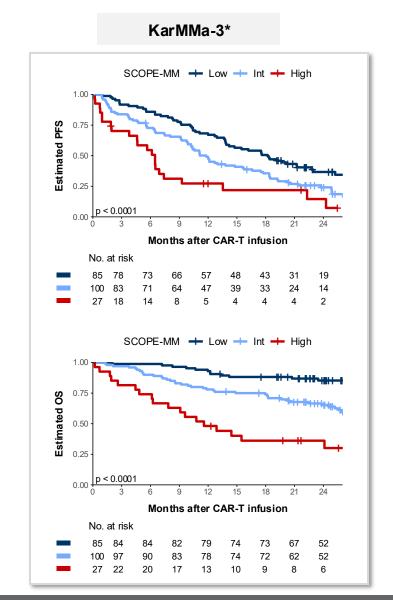
0 Points

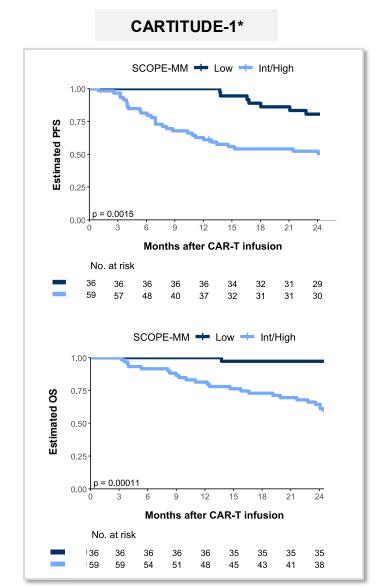

Low Risk


SCOPE-MM stratifies for survival and identifies ultra-high-risk patients with poor outcomes

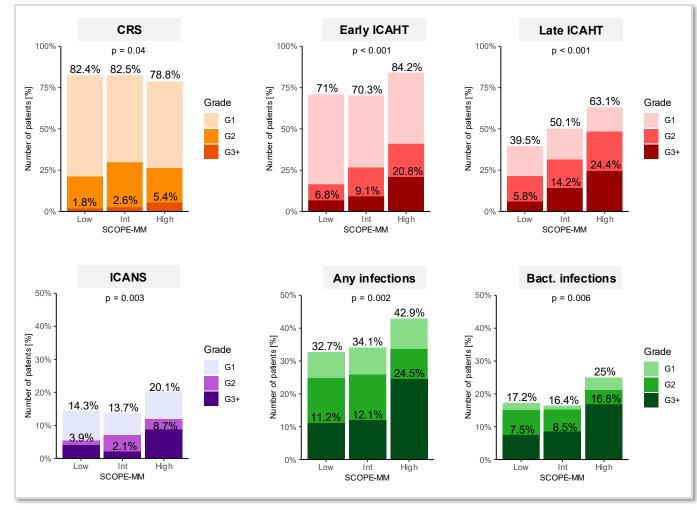
The three-tiered SCOPE-MM model (low, intermediate, high risk) clearly stratified patients with respect to IMWG response criteria, progression-free survival, and overall survival.

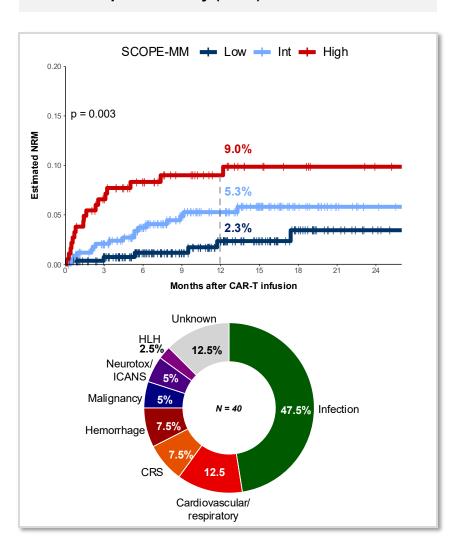

Extending to a **four-tiered model**, the model identified a minor **ultra-high-risk group of 2.5% of patients** (UHR, >5 points) characterized by particularly poor outcomes, with a median PFS of 2.4 months and a


median OS of 8.4 months.

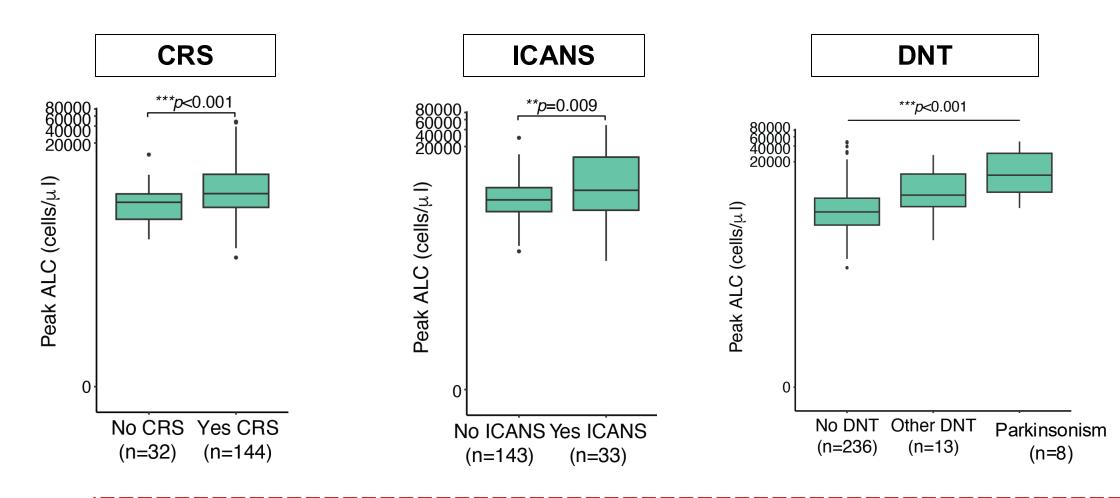


Broad external validation: SCOPE-MM discriminates for survival in a second real-world cohort and in the CAR-T treated patients of the KarMMa-3 and CARTITUDE-1 trials



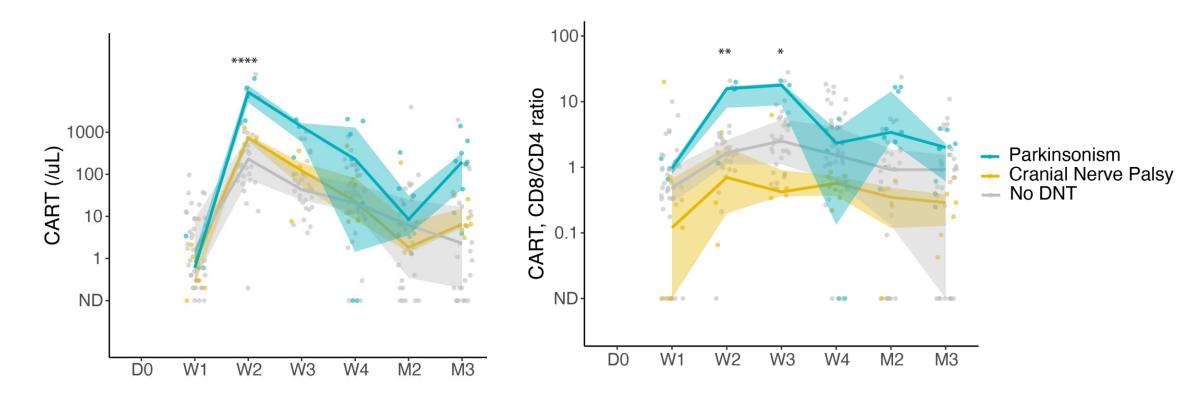

SCOPE-MM is associated with CAR-T toxicities and non-relapse mortality

CAR-T-related toxicities*: cytokine release syndrome (CRS), hematotoxicity (ICAHT), neurotoxicity (ICANS), and infections



*Grading according to Lee et al. BBMT (2019), Rejeski et al. Blood (2023)

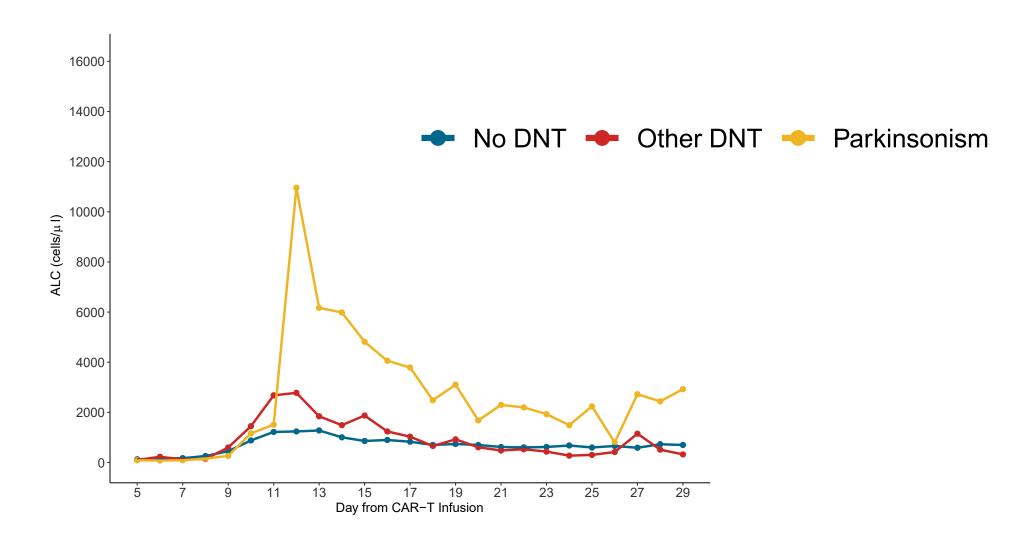
Non-relapse mortality (NRM) and cause of death


Cilta-cel: Peak ALC is associated with increased risk of CRS, ICANS, and DNT

Peak ALC was higher in patients developing CRS, ICANS and DNT, particularly Parkinsonism

Cell Coast Conference 2025 Hosoya et al, IMS 2025 OA-05

Cilta-cel: Patients with Parkinsonism show highest CAR-T expansion with elevated CD8/CD4 Ratio

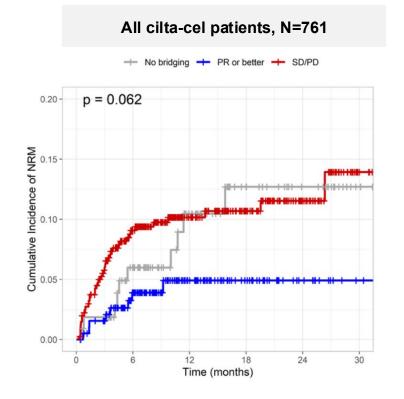


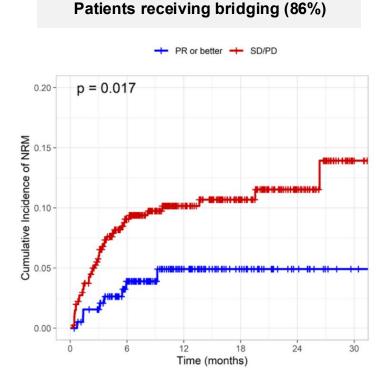
CAR T-cell expansion by FC

CD8/CD4 CAR-T ratio

Cell Coast Conference 2025 Hosoya et al, IMS 2025 OA-05

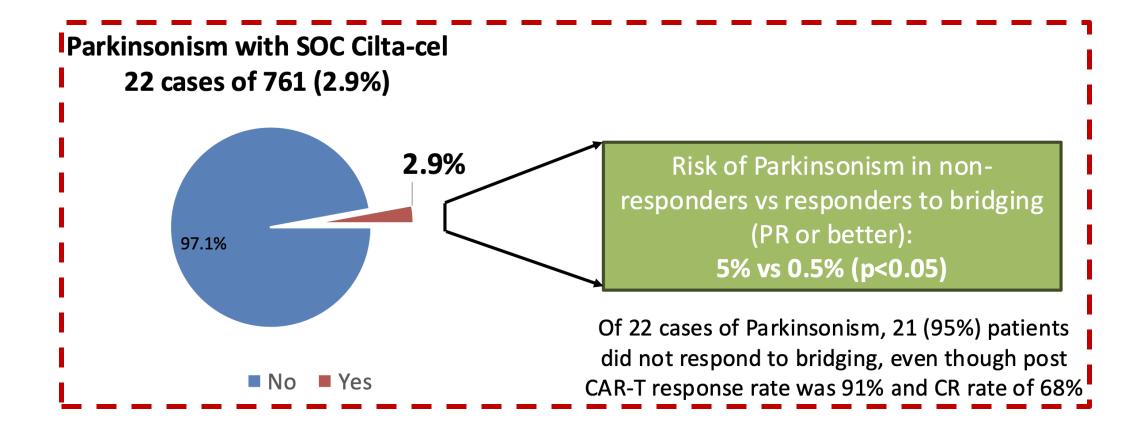
Cilta-cel: Longitudinal evaluation of ALC reveals rapid peak CAR-T expansion in patients with Parkinsonism


Cell Coast Conference 2025 Hosoya et al, IMS 2025 OA-05


Effective bridging therapy (BT) can mitigate the risk of CAR-T toxicity and reduce risk of non-relapse mortality (NRM)

Non-response to BT

Response to bridging and NRM; 33%: PR or better response to BT


- ❖Increased immune-mediated toxicity (Parkinsonism, IECcolitis)
- ❖High non-relapse mortality
- ❖Decreased CAR-T efficacy

Please do not share unpublished data

Non-response to bridging therapy with cilta-cel: 10 times higher risk of developing Parkinsonism

Please do not share unpublished data

Talquetamab: an effective bridging therapy pre-BCMA CAR-T in late relapse

Heavily pretreated, median 5 pLOT

N=134, 119 with CAR-T infusion (cilta-cel: 98)

❖ HR cytogenetics: 44%

Extramedullary disease: 41%

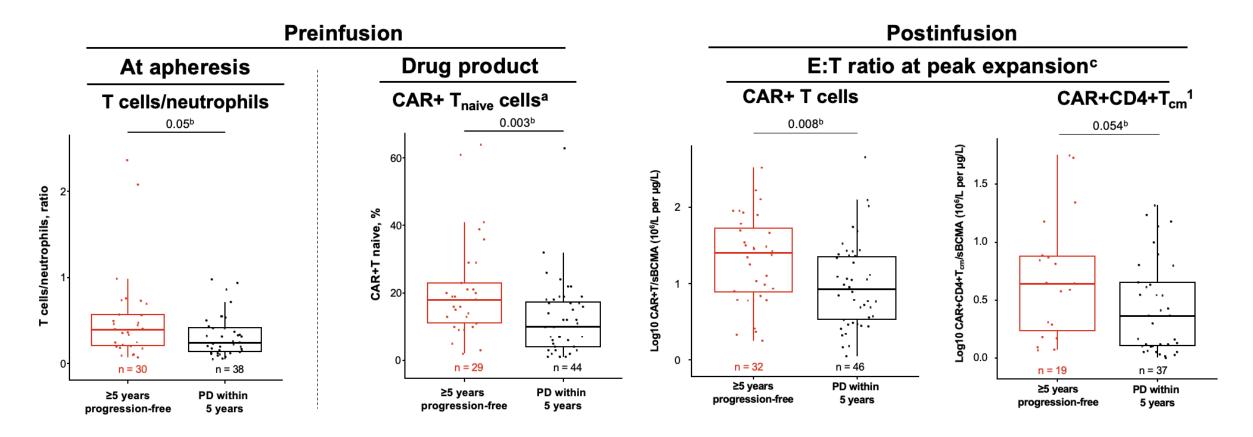
Median talquetamab exposure: 23 days

Talquetamab

❖ ORR: 71%, CR: 19%

CAR-T

❖ ORR: 88%, CR: 54%


Toxicity	All grades (%)	Grade 3 and 4 (%)
CRS	68	2
ICANS	6	1
IEC-HS	0	-
Delayed Neurotoxicity	1.5 (2): CN palsy	-
Infections	18	5
Severe cytopenia (day + 60)	5	5

No cases of Parkinsonism, Guillan Barre or other NT. NRM 4%, mostly due to infections 60% showed complete resolution of on-target off tumor toxicities

Please do not share unpublished data

Cell Coast Conference 2025 Dhakal B. Blood 2025 (in press)

Long-term response to cilta-cel: Better T cell fitness and CAR-T expansion

Long-term disease control: better immune fitness with more naïve T cells in CAR-T products
Higher E:T ratio with total CAR-T cells and more CD4+ CAR-T cells with central memory phenotype at peak expansion

CAR+ T_{naive} cells were defined as CD95-CD27+CD45RO-. ^b2-sided nominal *P* values unadjusted for multiplicity were provided for descriptive purposes. ^cE:T ratio was defined as maximal CAR-positive T-cell levels normalized by pre-infusion serum sBCMA levels.

Conclusion

- The SCOPE-MM score is the first pre-apheresis, clinically actionable risk model for patients with RRMM undergoing BCMA CAR-T
- The SCOPE-MM score is clinically valuable and product-agnostic. For this reason, the IMWG Immunotherapy Committee recommends use of the score for risk stratification in both clinical trials and real-world studies
- ❖ Early application of SCOPE-MM can change practice by identifying high-risk patients who may benefit from intensified bridging therapy or combination strategies and pre-emptive toxicity mitigation strategies
- Higher cilta-cel expansion and ALC associate with increased risk of neurotoxicity including ICANS and delayed neurotoxicity. Rapid peak CAR-T expansion is observed in patients with Parkinsonism
- ❖ Effective bridging therapy reduces toxicity and improves efficacy including talquetamab for heavily pretreated patients
- ❖ Long term disease control with cilta-cel associates with better T cell fitness and CAR-T expansion

Acknowledgements

Omar Castaneda
Ariel Grajales-Cruz
Ciara L. Freeman
Rebecca Gonzalez
Syed Hamza Bin Waqar
Michael Jain
Frederick Locke
Melissa Alsina
Kenneth Shain
Rachid Baz
Brandon Blue
Fabiana Perna
Lauren Peres
Laura Oswald

All patients and their families!

Marion Subklewe Sebastian Theurich Michael von Bergwelt Wajma Shahbaz Tobias Tix

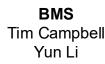
Hamburg Winfried Alsdorf Katja Weisel

US MULTIPLE MYELOMA IMMUNOTHERAPY CONSORTIUM

DFCI:Omar Nadeem
Shonali Midha
Adam Sperling
Nikhil Munshi

MSKCC:
Bruno Costa
Sridevi Rajeeve
Roni Shouval
Sham Mailankody
Saad Usmani

Susan Geyer
Katharine Dooley
A.D. Menezes Silva
Corraes
Saurabh Chhabra
Lisa Hwa
Christenson
Ricardo Parrondo
Vincent Rajkumar
Genevieve Spiess
Haily Stephens



Stanford
Surbhi Sidana
Hitomi Hosoya
Lekha Mikkilineni
Masooma Rana

Heidelberg
Jan Frenking
Mirco Friedrich
Marc S. Raab

MDAnderson Cancer Center

MD Anderson:
Krina Patel
Christen Dillard
Mahmoud Gaballa
Oren Pasvolsky
Saurabh Chhabra

TUMFlorian Bassermann
Judith Hecker
Anna Purcarea