## Novel cell therapies for sarcoma

Sandra P. D'Angelo, MD Associate Attending, Research Director Sarcoma Medical Oncology Cellular Therapeutics Service

## Disclosures

#### **Consulting /Advisory Role**

Adaptimmune, GI Innovation Inc, Ratio therapeutics, Replimmune, Incyte, Medendi, Piper Sandler & Co

## **Objectives**

Current data with T cell therapy in sarcoma

Determining mechanisms of response / resistance

- What do we know
- How can we learn more

Future alternative options

- Novel targets
- Alternative approaches (TIL)

# Adoptive cell therapy (ACT): Expanding immunotherapy options to cold tumors

#### Chimeric antigen receptor (CAR) T cells

Genetic engineering of T cells for surface markers expressed on tumors

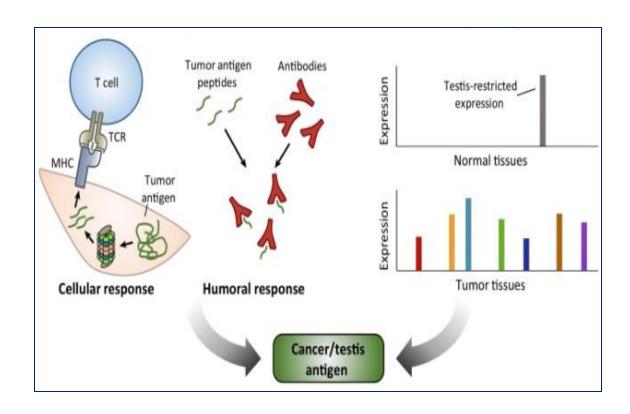
#### **Engineered T-cell receptor (TCR) T cells**

Genetic engineering of T cells encoding tumor-specific TCRs targeting antigen peptide-HLA complexes

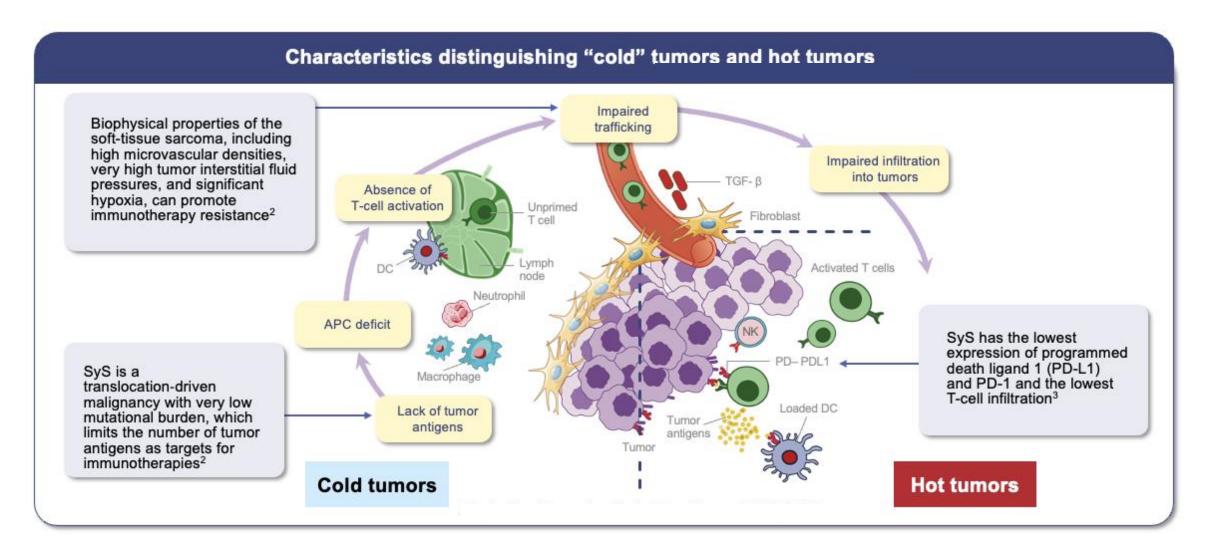
- 1. NYESO-1 TCR (letecel)
- 2. MAGE-A4 TCR (afamicel)

#### Tumor-infiltrating lymphocytes (TILs)

Lymphocytes naturally present within the tumor are expanded to target existing cancer antigens


**CAR T-cell and** TCR T-cell manufacturing process T-cell selection Genetic Expansion of and activation modification with genetically **CAR or TCR** modified T cells Patient Patient Leukapheresis **Processing** and infusion Processing and infusion **Tumor** excision **Expansion of Tumor dissection** tumor-activated and fragmentation TILs \_\_ Initial TIL TIL activation expansion assay manufacturing process

1. Lifileucel


#### Cancer Testis Antigens (CTAs) Are Proteins That Are Aberrantly Expressed in Many Different Cancers

# Normal expression pattern of CTA<sup>2,3</sup> Embryos Placenta Testicular germ cells No or low expression in normal adult somatic cells

## Cancer testis antigens are promising therapeutic targets



# Synovial sarcoma is the prototypical immunologically "cold" solid tumor serving as an ideal model to explore T cell therapy

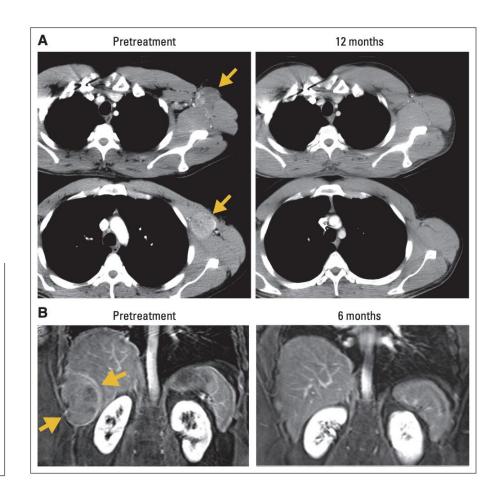


## 50% of patients with melanoma/synovial sarcoma treated with NYESO TCR + IL2 had decrease in tumor burden

VOLUME 29 · NUMBER 7 · MARCH 1 2011

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT


#### Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1

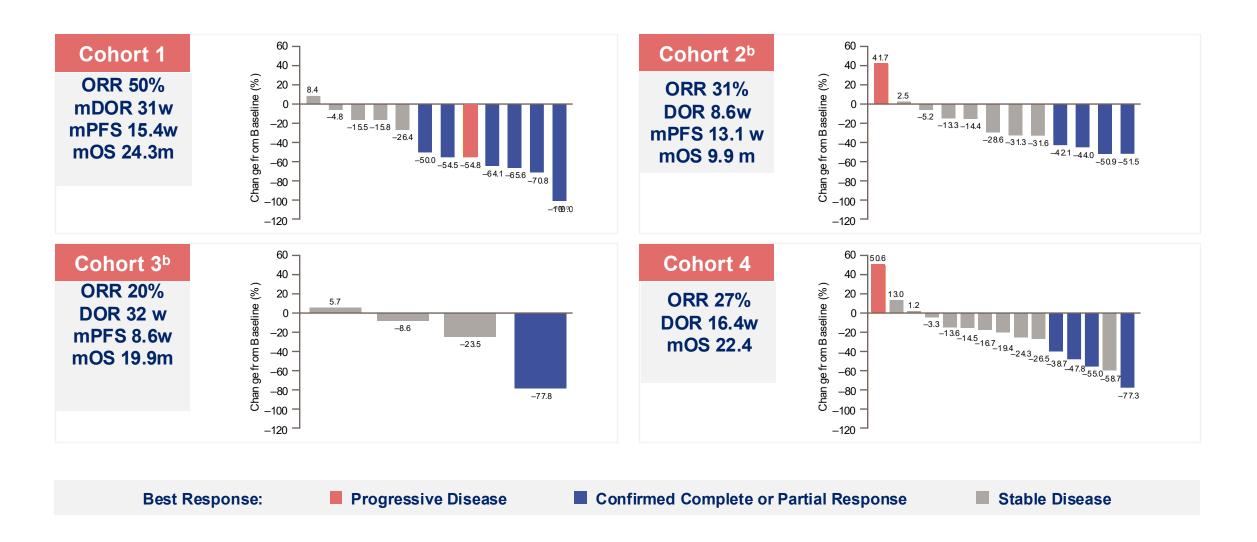
Paul F. Robbins, Richard A. Morgan, Steven A. Feldman, James C. Yang, Richard M. Sherry, Mark E. Dudley, John R. Wunderlich, Azam V. Nahvi, Lee J. Helman, Crystal L. Mackall, Udai S. Kammula, Marybeth S. Hughes, Nicholas P. Restifo, Mark Raffeld, Chyi-Chia Richard Lee, Catherine L. Levy, Yong F. Li, Mona El-Gamil, Susan L. Schwarz, Carolyn Laurencot, and Steven A. Rosenberg

| Synovial cell sarcoma |    |   |        |            |    |   |    |    |    |    |    |        |      |         |
|-----------------------|----|---|--------|------------|----|---|----|----|----|----|----|--------|------|---------|
| 12‡                   | 20 | M | lu, bo | R, S, C, I | 83 | 5 | 82 | 8  | 77 | 64 | 91 | 10,065 | 117  | PR (10) |
| 13‡                   | 37 | F | lu     | R, S, C    | 50 | 8 | 90 | 5  | 78 | 78 | 93 | 11,656 | 94   | PR (18) |
| 14‡                   | 47 | F | lu, In | R, S, C    | 56 | 8 | 89 | 11 | 81 | 76 | 91 | 10,836 | 50   | PR (5)  |
| 15‡                   | 19 | Μ | lu     | R, S, C, I | 16 | 5 | 46 | 40 | 67 | 63 | 89 | 5,371  | < 30 | PD      |
| 16                    | 30 | Μ | pl, hi | S, C       | 59 | 5 | 92 | 8  | 74 | 57 | 88 | 6,512  | 199  | PR (8)  |
| 17                    | 40 | Μ | pl, hi | R, S, C    | 52 | 5 | 81 | 18 | 78 | 69 | 92 | 8,098  | < 30 | PD      |

Abbreviations: IL-2, interleukin-2; IFN-γ, interferon gamma; M, male; In, lymph node; R, radiation; S, surgery; I, immunotherapy; PR, partial response; F, female; sc, subcutaneous; Iu, lung; PD, progressive disease; bo, bone; panc, pancreas; sb, small bowel; ki, kidney; CR, complete response; C, chemotherapy; br, brain; ND, not done; spl, spleen; pl, pleura; hi, hilum.

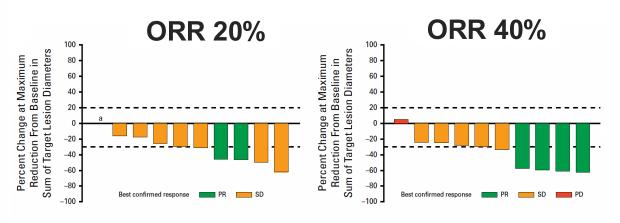
 $\ddagger$ Patients 12, 14, and 15 received one (patients 14 and 15) or two (patient 12) additional infusions of 1G4- $\alpha$ 95LY-transduced T cells but did not respond to the treatments. Patient 13 received a second infusion of transduced T cells 9 months after the initial treatment and demonstrated a partial response lasting 18 months from the time of the initial treatment with transduced T cells.



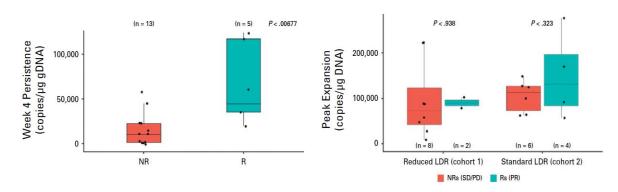

<sup>\*</sup>Overnight cocultures of infusion samples were carried out with HLA-A\*0201–positive tumor cell lines that either expressed (624 mel) or did not express (526 mel) NY-ESO-1.

In parentheses are the durations of response in months from the day of cell infusion.

## Pilot study of NY-ESO-1 TCR (lete-cel) in synovial sarcoma


| Cohort | NY-ESO-1 expression                                                 | Lymphodepletion regimen                                                      |  |  |
|--------|---------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| 1      | HIGH                                                                | HIGH doses of fludarabine and cyclophosphamide                               |  |  |
| (n=12) | IHC score 2+ or 3+ in ≥50% of tumor cells                           | Fludarabine 120 mg/m <sup>2</sup> Cyclophosphamide 3600 mg/m <sup>2</sup> IV |  |  |
| 2      | LOW                                                                 | HIGH doses of fludarabine and cyclophosphamide                               |  |  |
| (n=13) | IHC score ≥1+ in ≥1% cells but not exceeding 2+ or 3+ in ≥50% cells | Fludarabine 120 mg/m² IV<br>Cyclophosphamide 3600 mg/m² IV                   |  |  |
| 3      | HIGH                                                                | HIGH dose of cyclophosphamide only                                           |  |  |
| (n=5)  | IHC score 2+ or 3+ in ≥50% of tumor cells                           | Cyclophosphamide 3600 mg/m² IV                                               |  |  |
| 4      | HIGH                                                                | LOW doses of fludarabine and cyclophosphamide                                |  |  |
| (n=15) | IHC score 2+ or 3+ in ≥50% of tumor cells                           | Fludarabine 90 mg/m <sup>2</sup> Cyclophosphamide 1800 mg/m <sup>2</sup>     |  |  |

## ORR ranges from 20-50%, DOR 8-32 weeks

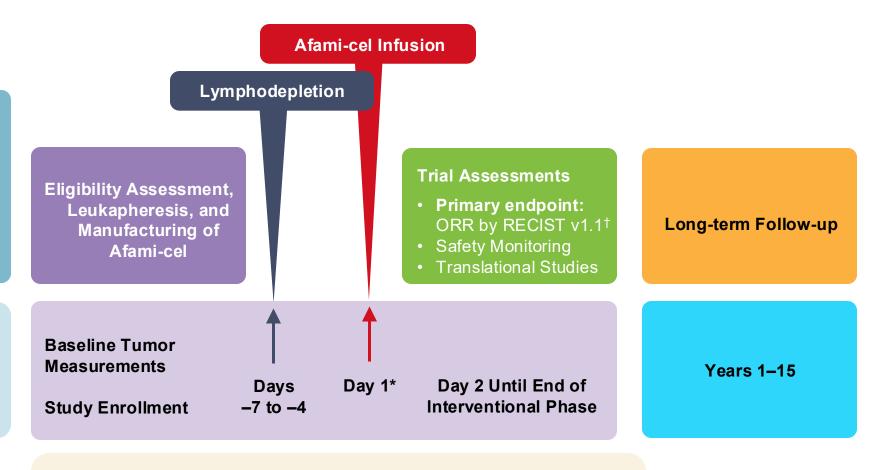



# Letecel in myxoid round cell liposarcoma demonstrates promising efficacy

| Parameter                                                                                            | Cohort 1: Reduced-Dose LDR (n = 10) | Cohort 2: Standard-Dose LDR (n = 10) |
|------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|
| Sex, No. (%)                                                                                         |                                     |                                      |
| Female                                                                                               | 4 (40)                              | 3 (30)                               |
| Male                                                                                                 | 6 (60)                              | 7 (70)                               |
| Age, years, median <sup>a</sup>                                                                      | 52.5                                | 41.0                                 |
| Race, No. (%)                                                                                        |                                     |                                      |
| White                                                                                                | 9 (90)                              | 10 (100)                             |
| Black                                                                                                | 1 (10)                              | 0                                    |
| Disease stage at screening <sup>b</sup>                                                              |                                     |                                      |
| No.                                                                                                  | 10                                  | 9°                                   |
| Stage IIIb, No. (%)                                                                                  | 1 (10)                              | 3 (33)                               |
| Stage IV, No. (%)                                                                                    | 9 (90)                              | 6 (67)                               |
| Range of tumor cells positive for NY-ESO-1 (2+/3+ per IHC) <sup>d</sup>                              | 30-100                              | 70-100                               |
| Range of H score for NY-ESO-1 expression                                                             | 110-300                             | 185-300                              |
| Percent of round cells, median (range)                                                               | 22.5 (0-30) (n = 6)                 | 16 (0-90) (n = 9)                    |
| Previous systemic therapy, ef No. (%)                                                                | 10 (100)                            | 10 (100)                             |
| Median lines of systemic therapy before leukapheresise                                               | 2.5                                 | 1                                    |
| Type of chemotherapy before leukapheresis, No. (%) <sup>e</sup>                                      |                                     |                                      |
| Doxorubicin-based                                                                                    | 8 (80)                              | 8 (80)                               |
| Doxorubicin/ifosfamide                                                                               | 5 (50)                              | 3 (30)                               |
| Trabectedin                                                                                          | 7 (70)                              | 4 (40)                               |
| Type of chemotherapy before diagnosis of advanced/metastatic disease (neoadjuvant/adjuvant), No. (%) |                                     |                                      |
| Doxorubicin-based                                                                                    | 4 (40)                              | 2 (20)                               |
| Doxorubicin/ifosfamide                                                                               | 4 (40)                              | 2 (20)                               |
| Previous systemic therapy between apheresis and lymphodepletion, <sup>9</sup> No. (%)                |                                     |                                      |
| Chemotherapy                                                                                         | 7 (70)                              | 3 (30)                               |
| No chemotherapy                                                                                      | 3 (30)                              | 7 (70)                               |
| Type of bridging chemotherapy, <sup>9</sup> No. (%)                                                  |                                     |                                      |
| Doxorubicin                                                                                          | 3 (30)                              | 2 (20)                               |
| Trabectedin                                                                                          | 4 (40)                              | 1 (10)                               |
| Eribulin                                                                                             | 1 (10)                              | -                                    |
| Median No. of transduced T cells in 10 <sup>9</sup> cells                                            | 4.7                                 | 4.6                                  |



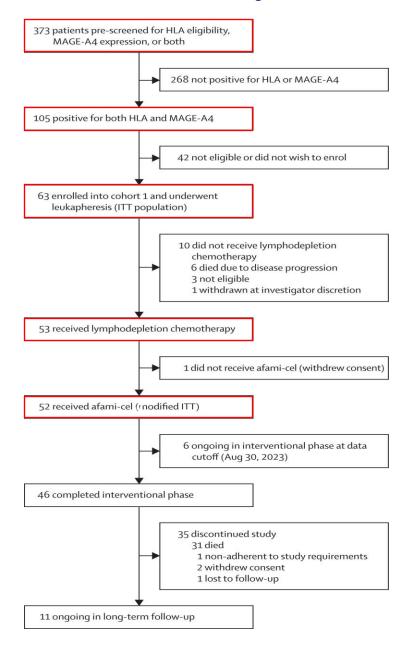
#### Persistence and Expansion higher in responders




# SPEARHEAD-1: Phase 2 Trial of Afami-cel in Patients With Advanced Synovial Sarcoma or MRCLS

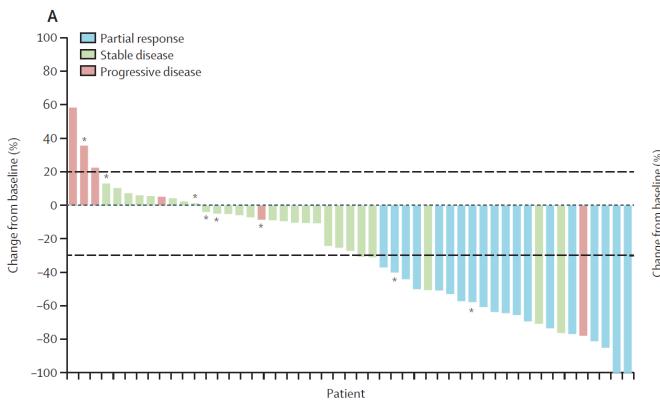
#### **Key eligibility**

- Previously received either an anthracyclineor ifosfamide-containing regimen
- ECOG 1-2
- Age ≥16 and ≤75
- HLA Screening followed by MAGE-A4 IHC testing

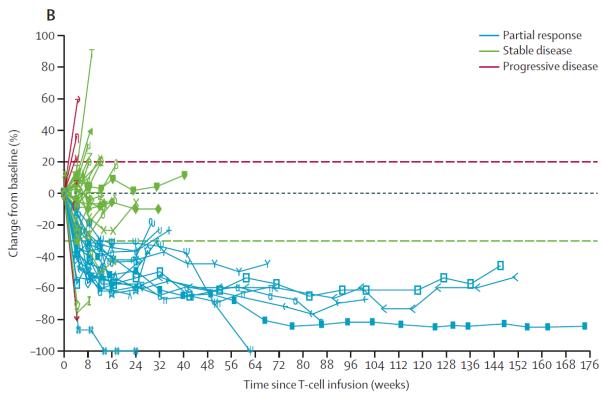

Screening and key eligibility



Approximately 90 patients are planned to be treated

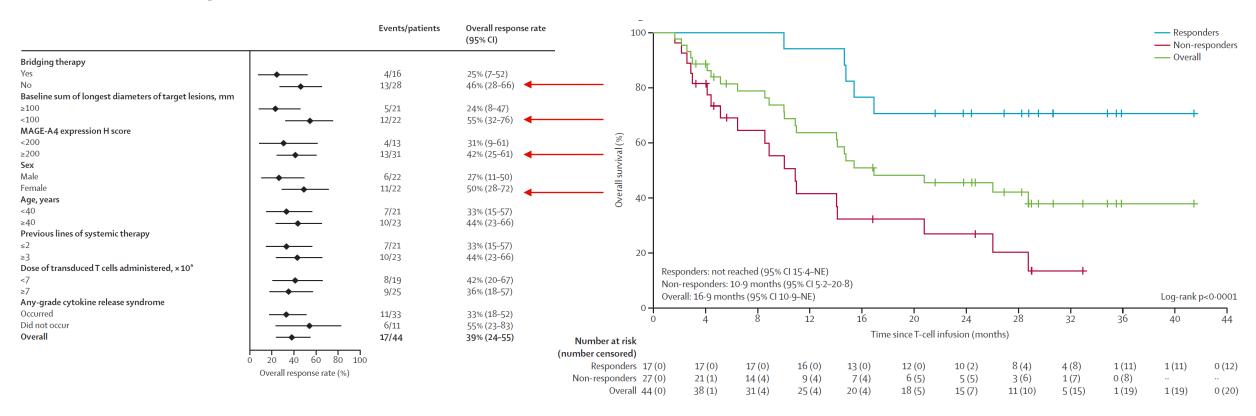

- Cohort 1: 45 patients (enrollment complete)
- Cohort 2: 45 patients (recruiting SyS patients only)

## Afami-cel in synovial sarcoma




|                                    | Patients with<br>synovial sarcoma<br>(n=44) | Patients with myxoi<br>round cell<br>liposarcoma (n=8) | d All patients (n=52) |
|------------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------|
| Age at consent, years              | 40-5 (31-0-46-0)                            | 43.5 (32.5-54.5)                                       | 41.0 (31.0 - 46.5)    |
| Sex                                |                                             |                                                        |                       |
| Female                             | 22 (50%)                                    | 2 (25%)                                                | 24 (46%)              |
| Male                               | 22 (50%)                                    | 6 (75%)                                                | 28 (54%)              |
| Race                               |                                             |                                                        |                       |
| Asian                              | 3 (7%)                                      | 0                                                      | 3 (6%)                |
| Black or African American          | 2 (5%)                                      | 0                                                      | 2 (2%)                |
| White                              | 39 (89%)                                    | 6 (75%)                                                | 45 (87%)              |
| Unknown                            | 0                                           | 2 (25%)                                                | 2 (4%)                |
| Ethnicity                          |                                             | - ()                                                   | - ( /                 |
| Hispanic or Latino                 | 2 (5%)                                      | 0                                                      | 2 (4%)                |
| Not Hispanic or Latino             | 38 (86%)                                    | 5 (63%)                                                | 43 (83%)              |
| Not reported                       | 4 (9%)                                      | 2 (25%)                                                | 6 (12%)               |
| Unknown                            | 0                                           | 1 (13%)                                                | 1 (2%)                |
| Geographical region                | <u> </u>                                    | 1 (1370)                                               | 1 (270)               |
| Europe                             | 12 (27%)                                    | 1 (13%)                                                | 13 (25%)              |
| Canada and the USA                 | 31 (70%)                                    | 6 (75%)                                                | 13 (25%)<br>37 (71%)  |
| UK                                 |                                             |                                                        |                       |
|                                    | 1 (2%)                                      | 1 (13%)                                                | 2 (4%)                |
| Histological grade                 | _                                           | - ()                                                   | - ()                  |
| Well differentiated                | 0                                           | 2 (25%)                                                | 2 (4%)                |
| Moderately well differentiated     | 9 (25%)                                     | 0                                                      | 9 (17%)               |
| Poorly differentiated              | 22 (50%)                                    | 4 (50%)                                                | 26 (50%)              |
| Undifferentiated                   | 4 (9%)                                      | 1 (13%)                                                | 5 (10%)               |
| Unknown                            | 9 (20%)                                     | 1 (13%)                                                | 10 (19%)              |
| Stage of cancer at last staging    |                                             |                                                        |                       |
| II                                 | 2 (5%)                                      | 0                                                      | 2 (4%)                |
| III                                | 1 (2%)                                      | 0                                                      | 1 (2%)                |
| IV                                 | 35 (80%)                                    | 6 (75%)                                                | 41 (79%)              |
| Unknown*                           | 6 (14%)                                     | 2 (25%)                                                | 8 (15%)               |
| Previous lines of systemic therapy |                                             | _                                                      |                       |
| 1                                  | 7 (16%)                                     | 3 (38%)                                                | 10 (19%)              |
| 2                                  | 14 (32%)                                    | 1 (13%)                                                | 15 (29%)              |
| 3                                  | 9 (20%)                                     | 0                                                      | 9 (17%)               |
| ≥4                                 | 14 (32%)                                    | 4 (50%)                                                | 18 (35%)              |
| Received bridging therapy          |                                             | _                                                      |                       |
| Yes                                | 16 (36%)                                    | 4 (50%)                                                | 20 (38%)              |
| Pazopanib                          | 11 (25%)                                    | 0                                                      | 11 (21%)              |
| Trabectedin                        | 1 (2%)                                      | 2 (25%)                                                | 3 (6%)                |
| Ifosfamide                         | 3 (7%)                                      | 0                                                      | 3 (6%)                |
| Doxorubicin                        | 1 (2%)                                      | 1 (13%)                                                | 2 (4%)                |
| Docetaxel                          | 0                                           | 1 (13%)                                                | 1 (2%)                |
| No                                 | 28 (64%)                                    | 4 (50%)                                                | 32 (62%)              |
| ECOG performance status            | , ,                                         | . (= -/                                                |                       |
| 0                                  | 23 (52%)                                    | 4 (50%)                                                | 27 (52%)              |
| 1                                  | 20 (45%)                                    | 4 (50%)                                                | 24 (46%)              |
| 2†                                 | 1 (2%)                                      | 0                                                      | 1 (2%)                |
| ~1                                 | ~ (~ ~)                                     | •                                                      | A (A 70)              |

## Afami-cel in synovial sarcoma




ORR 39% (17/44)



Median duration of response 12 months

# Afami-cel in synovial sarcoma: trend towards improved efficacy in those with lower disease burden, lack of bridging, higher MAGE4 expression



Median overall survival 16.9 months

Median overall survival for responders not yet reached

## Afamicel adverse events

|                                                | Grade 1-2 | Grade 3 | Grade 4 | Overall  |
|------------------------------------------------|-----------|---------|---------|----------|
| Cytokine release syndrome                      | 36 (69%)  | 1 (2%)  | 0       | 37 (71%) |
| Decreased white blood cell count or leukopenia | 1 (2%)    | 8 (15%) | 5 (10%) | 14 (27%) |
| Pyrexia                                        | 10 (19%)  | 1 (2%)  | 1 (2%)  | 12 (23%) |
| Decreased neutrophil count or neutropenia      | 1 (2%)    | 5 (10%) | 6 (12%) | 12 (23%) |
| Decreased lymphocyte count or lymphopenia      | 0         | 3 (6%)  | 6 (12%) | 9 (17%)  |
| Nausea                                         | 6 (12%)   | 0       | 0       | 6 (12%)  |
| Fatigue                                        | 6 (12%)   | 0       | 0       | 6 (12%)  |
| Decreased platelet count or thrombocytopenia   | 3 (6%)    | 1 (2%)  | 2 (4%)  | 6 (12%)  |
| Weight loss                                    | 2 (4%)    | 1 (2%)  | 0       | 3 (6%)   |
| Febrile neutropenia                            | 1 (2%)    | 2 (4%)  | 0       | 3 (6%)   |
| Decreased haemoglobin or anaemia               | 1 (2%)    | 2 (4%)  | 0       | 3 (6%)   |
| Pancytopenia                                   | 0         | 1 (2%)  | 1 (2%)  | 2 (4%)   |
| Dyspnoea                                       | 1 (2%)    | 1 (2%)  | 0       | 2 (4%)   |
| Hyponatraemia                                  | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Pleural effusion                               | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Pleuritic pain                                 | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Pulmonary embolism                             | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Deep vein thrombosis                           | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Superior vena cava occlusion                   | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Empyema                                        | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Anuria                                         | 0         | 1 (2%)  | 0       | 1 (2%)   |
| Hepatic cytolysis                              | 0         | 1 (2%)  | 0       | 1 (2%)   |

Data are n (%). Grade 1–2 events are reported here if they occurred in more than 10% of patients. All grade 3 and 4 events are shown. No treatment-related deaths (grade 5 events) occurred.

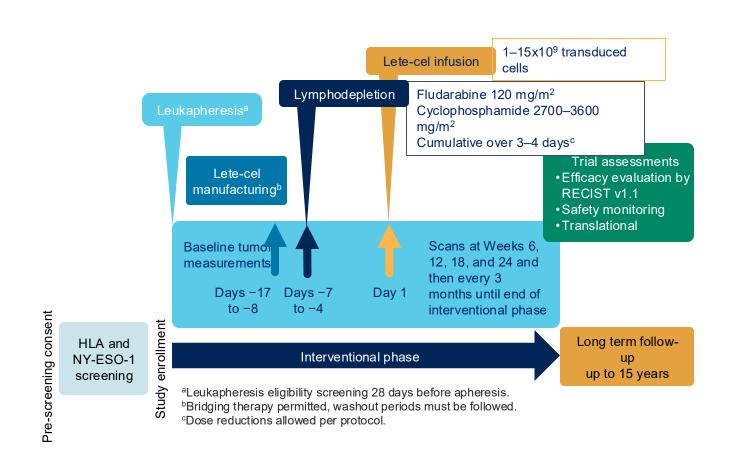
Table 2: Adverse events related to T-cell infusion in the modified intention-to-treat population (n=52) as of March 29, 2023

CRS occurred in 71% (33/44) patients, including Grade ≥3 in 2% (1/44) of patients

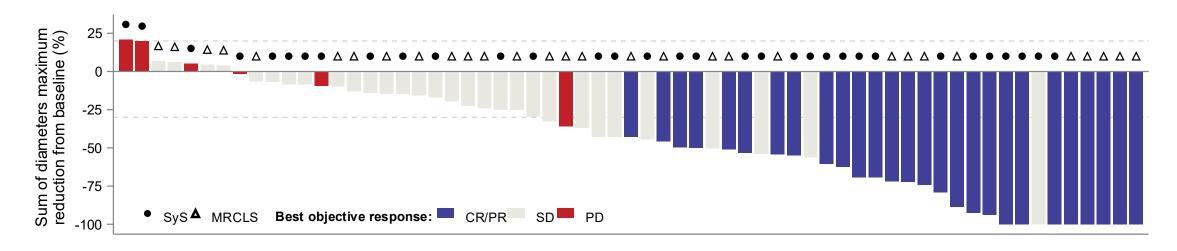
Median time to onset of 2 (range: 1–5) days Median time to resolution of 3 (range: 1–14) days

One patient experienced immune effector cell– associated neurotoxicity syndrome ICANS resolved in 1 day

Cyopenias (leukopenia, neutropenia, lymphopenia, thrombocytopenia, anemia) occurred in up to 27% of patients

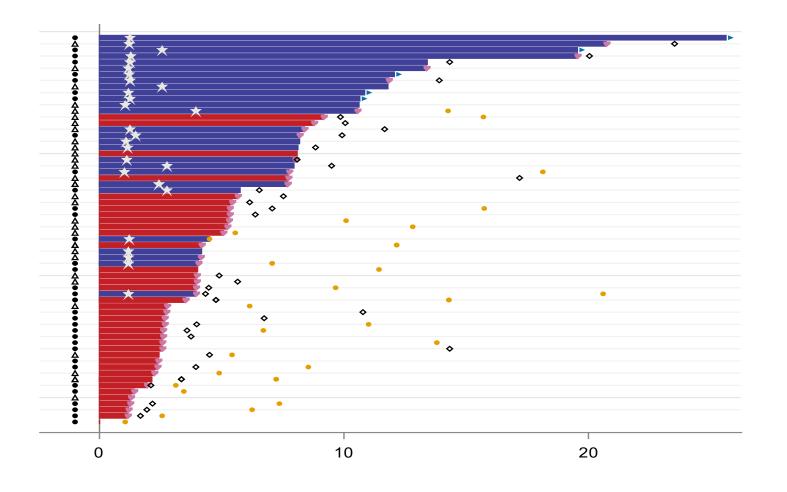

## IGNYTE-ESO Study: Letecel in synovial sarcoma/MRCLS

#### **Eligibility**


- HLA-A\*02:01, \*02:05, or \*02:06 positive
- Aged ≥10 years
- NY-ESO-1–expressing (≥30% staining at 2+/3+ per IHC) metastatic or unresectable SyS or MRCLS
- ECOG PS 0–1
- Must have started/received anthracycline-based chemotherapy before apheresis
- Must have progression on their last prior line of therapy (bridging therapy excluded) and measurable disease per RECIST v1.1 before lymphodepletion

#### **Endpoints**

- Primary: ORR per RECIST v1.1 by central independent review
- Secondary include: Safety, time to response, duration of response, disease control rate, PFS, OS




## ORR at Primary Analysis: 42%



| Best overall response, n (%) | Overall (N=64)      | SyS (n=34)          | MRCLS (n=30)        |
|------------------------------|---------------------|---------------------|---------------------|
| CR                           | 6 (9)               | 3 (9)               | 3 (10)              |
| PR                           | 21 (33)             | 11 (32)             | 10 (33)             |
| SD                           | 30 (47)             | 14 (41)             | 16 (53)             |
| PD                           | 6 (9)               | 5 (15)              | 1 (3)               |
| NE                           | 1 (2)               | 1 (3)               | 0                   |
| ORR [95% CI]                 | 27 (42) [29.9–55.2] | 14 (41) [24.6–59.3] | 13 (43) [25.5–62.6] |

## Median duration of response 12.2 months



|                                                          | Overall<br>(N=64)      | SyS<br>(n=34)     | MRCLS<br>(n=30)   |
|----------------------------------------------------------|------------------------|-------------------|-------------------|
| Duration of response, months, median (95% CI)            | 12.2<br>(6.8,<br>19.5) | 18.3<br>(3.3, –)  | 12.2<br>(5.3, –)  |
| Progression-free<br>survival, months,<br>median (95% CI) | 5.3<br>(4.0, 8.0)      | 3.9<br>(2.6, 7.8) | 7.7<br>(5.2, 9.2) |

- Death
- Ongoing
- RECIST progression
- First confirmed response
- Anti-cancer therapy
- SyS MRCLS
- Response Responder
- Non-responder

## Treatment-Emergent Lymphodepletion-Related AEs

Lymphodepletion-related AEs in >15% of patients, N=66

| Adverse event, n (%)                 | Any grade | Grade ≥3 |
|--------------------------------------|-----------|----------|
| Any event                            | 65 (98)   | 59 (89)  |
| Neutropenia                          | 48 (73)   | 48 (73)  |
| Thrombocytopenia                     | 42 (64)   | 32 (48)  |
| Anemia                               | 41 (62)   | 29 (44)  |
| Leukopenia                           | 32 (48)   | 31 (47)  |
| Febrile neutropenia                  | 19 (29)   | 18 (27)  |
| Fatigue                              | 14 (21)   | 0        |
| Alopecia                             | 13 (20)   | 0        |
| Diarrhea                             | 13 (20)   | 0        |
| Decreased appetite                   | 12 (18)   | 2 (3)    |
| Nausea                               | 12 (18)   | 0        |
| Aspartate aminotransferase increased | 11 (17)   | 6 (9)    |
| Hypophosphatemia                     | 11 (17)   | 2 (3)    |

• There was one Grade 5 treatment-emergent lymphodepletion-related AE of pulmonary alveolar hemorrhage in the setting of pancytopenia, and a platelet count of 0 despite HLA-matched platelets and platelet-stimulating agents

## Treatment-Emergent T Cell-Related AEs

#### T cell–related AEs in ≥15% of patients, N=66

| Adverse event, n (%)                 | Any grade | Grade ≥3 |
|--------------------------------------|-----------|----------|
| Any event                            | 64 (97)   | 56 (85)  |
| Cytokine release syndrome            | 61 (92)   | 8 (12)   |
| Rash (and associated terms)          | 42 (64)   | 23 (35)  |
| Neutropenia                          | 30 (45)   | 28 (42)  |
| Anemia                               | 26 (39)   | 22 (33)  |
| Thrombocytopenia                     | 23 (35)   | 20 (30)  |
| Alanine aminotransferase increased   | 21 (32)   | 11 (17)  |
| Pyrexia                              | 20 (30)   | 2 (3)    |
| Aspartate aminotransferase increased | 19 (29)   | 6 (9)    |
| Diarrhea                             | 16 (24)   | 0        |
| Leukopenia                           | 16 (24)   | 15 (23)  |
| Nausea                               | 16 (24)   | 0        |
| Hypophosphatemia                     | 13 (20)   | 0        |
| Febrile neutropenia                  | 12 (18)   | 11 (17)  |
| Pruritus                             | 12 (18)   | 0        |
| Dyspnea                              | 11 (17)   | 3 (5)    |
| Headache                             | 10 (15)   | 0        |

#### Cytokine release syndrome (CRS)<sup>a</sup>

- Median time of onset: 2 days (range 1 to 9)
- Median duration: 7 days (range 2 to 51)
- Among the patients with CRS, 79% required tocilizumab, 27% corticosteroids, and 6% anakinra

#### Rash (and associated terms)<sup>a</sup>

- "Rash maculopapular" was most common rash AE reported
- Median time of onset: 7 days (range: 2–332)
- Median duration: 22 days (range: 1–498)

#### Neurological

• ICANS occurred in four (6%) patients, all Grade 1

#### Grade 5 related AE

 There was one T cell-related AE of cardiac arrest, attributed primary pulmonary etiology

## More than a decade of T cell therapy in sarcoma: Lessons learned

2013

2016

2019

2020

Protocol 13:236
Lete-cel (NYESO-1) TCR in synovial sarcoma

ORR 20-50% DOR 15-30 weeks Protocol 16:1406

Lete-cel (NYESO-1) TCR in myxoid round cell liposarcoma

ORR 20-40% DOR 5-7m Protocol 19:316

Afami-cel (MAGE-A4 TCR) in synovial sarcoma + MRCLS

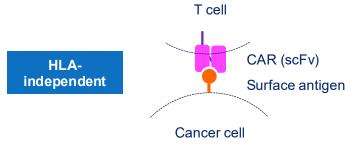
ORR 39% (SS), 25% (MRCLS)
DOR 12m (SS), 4m MRCLS)

- Higher LDR impacts efficacy (Flu Correlates 120mg/m2 + Cy 2700mg/m2) Expansion
- Bridging therapy is essential option
- Correlates of response: expansion, persistence, IL15 levels, depletion of lymphocytes
- Correlates of resistance: loss of HLA expression & Ag presenting machinery

- Correlates of response: Expansion, persistence, IL15 levels, depletion of lymphocytes
- Tocilizumab doesn't appear to impact efficacy
- Clinical correlates: Lower disease burden, higher MAGEA4 expression, lack of bridging therapy
- Higher cell dose may impact efficacy
- Integrating cells early is likely better

FDA approved in 2024

Protocol 20:055


Lete-cel (NYESO-1) TCR in synovial sarcoma + MRCLS

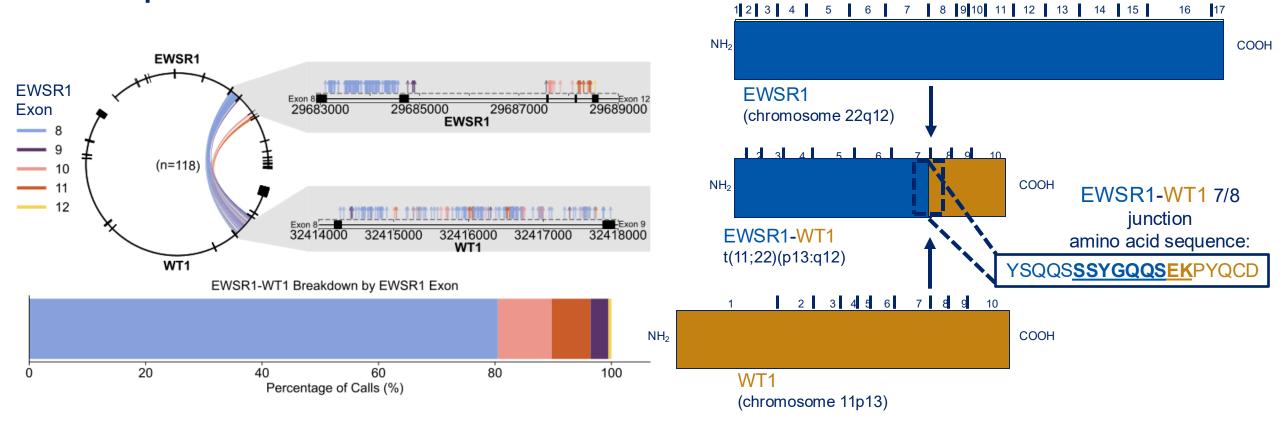
ORR 43% DOR 12.2m

Primary endpoint met

**BLA planned for 2025** 

## Expanding our targets

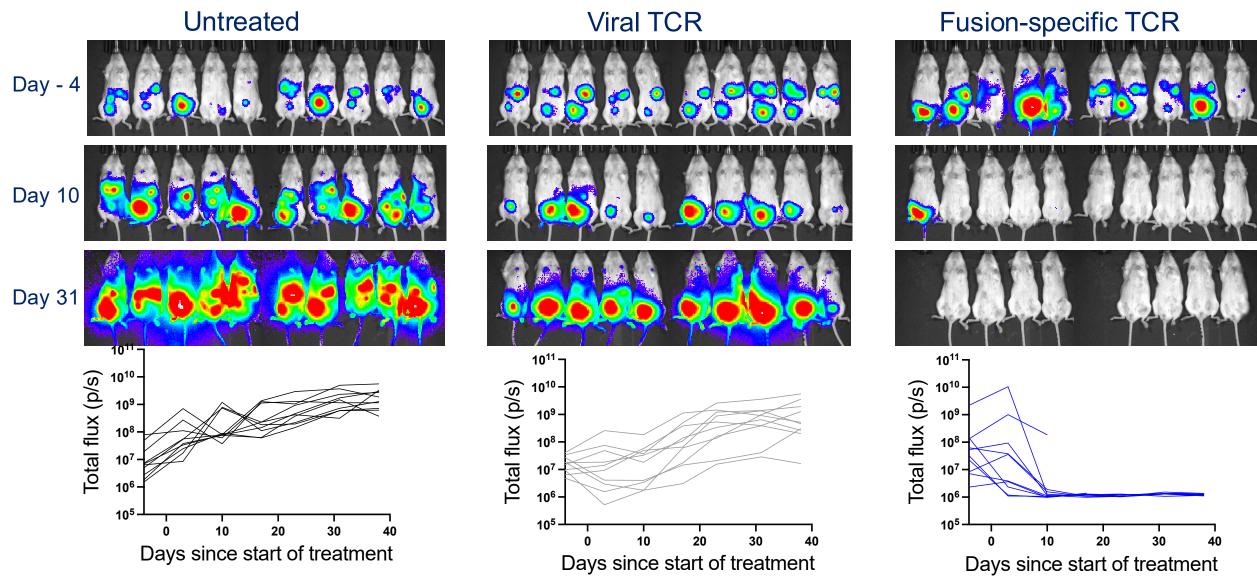





#### **Membrane-associated proteins**

- ~11% of the proteome
- Potential antibody and CAR targets
- Examples:

CD19, BCMA, mesothelin, HER2, B7H3


# EWSR1-WT1: a recurrent oncogenic driver with intronic breakpoints



<u>Central Hypothesis:</u> Recurrent oncogenic fusion proteins generate immunogenic public NeoAgs that can serve as the foundation for T cell-based immunotherapies.

\*Led by Lauren Banks, MD PhD

# Tumor regression in mice harboring DSRCT tumors treated with CD8 T cells expressing fusion-specific TCRs



Madelyn Espinosa-Cotton, Cheung Lab

\*Led by Lauren Banks, MD PhD

MSKCC unpublished data. Please do not copy or repost

# Adoptive cell therapy (ACT): Expanding immunotherapy options to cold tumors

CAR T-cell and TCR T-cell

manufacturing

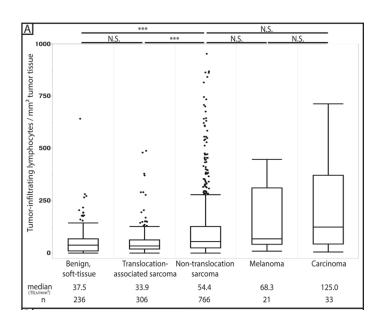
#### Chimeric antigen receptor (CAR) T cells

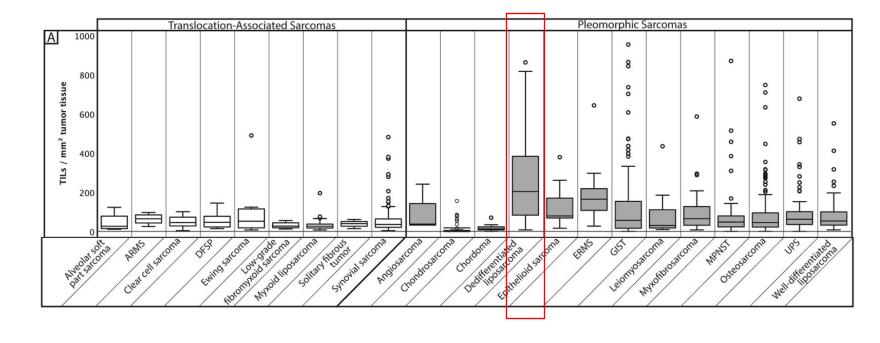
Genetic engineering of T cells for surface markers expressed on tumors

#### **Engineered T-cell receptor (TCR) T cells**

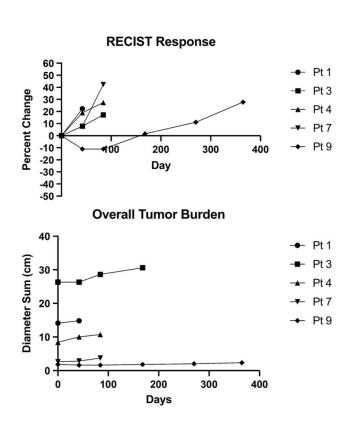
Genetic engineering of T cells encoding tumor-specific TCRs targeting antigen peptide-HLA complexes

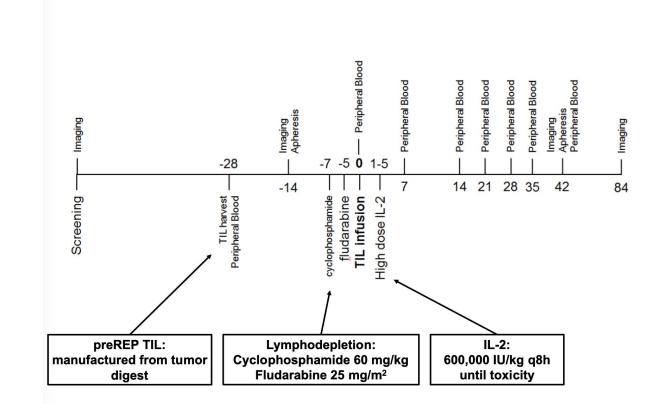
- 1. NYESO-1 TCR (letecel)
- 2. MAGE-A4 TCR (afamicel)


#### Tumor-infiltrating lymphocytes (TILs)


Lymphocytes naturally present within the tumor are expanded to target existing cancer antigens

process T-cell selection Genetic Expansion of and activation modification with genetically **CAR or TCR** modified T cells Patient Patient Leukapheresis **Processing** and infusion Processing and infusion **Tumor** excision **Expansion of Tumor dissection** tumor-activated and fragmentation TILs \_\_ Initial TIL TIL activation expansion assay manufacturing process


1. Lifileucel


## TILs are present in complex > fusion-associated sarcomas

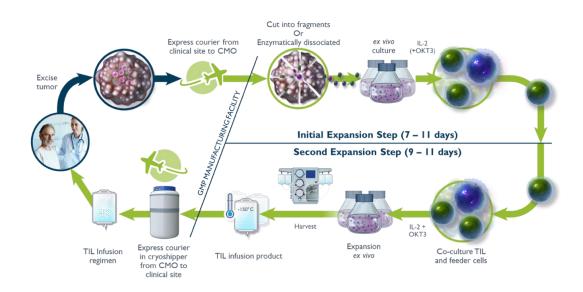




## TIL harvest/expansion/infusion is feasible in STS






Phase I study in AYA sarcoma

Primary endpoint: feasibility (>33% manufacturing success) and safety (>G3 treatment related toxicity) in <20%)

All eligible patients with expanded product (n = 5) completed TIL-ACT regimen No TIL-related toxicity

## Ongoing pilot study of lifileucel in uveal melanoma

- Primary endpoint: Feasibility, # patients who undergo TIL infusion
- Secondary endpoint: Proportion of patients who achieve successful manufacturing of lifileucel, Overall response rate



#### Diagnosis of advanced UPS or DDLPS

No contraindication to IL-2 or fludarabine/cyclophosphamide conditioning therapy

Progressed on ≥ 1 line of prior therapy

One lesion ≥ 1.5cm in size, 2<sup>nd</sup> measurable target lesion

Primary endpoint: safety and feasibility

At least **5 of 10** patients who undergo tumor harvest must undergo TIL infusion

Early stopping rule for Grade 5 toxicity or unacceptable proportion of Grade 4 non-heme tox due to TIL

Secondary endpoints:

Objective response rate

# Screening Period ≤ 28 days from ICF signature

#### **Enrollment**

**Tumor Harvest** 

Treatment Period
LDR (Day -5 to Day -1)
LN-144 infusion (Day 0)

LN-144 infusion (Day 0)
IL-2 therapy (Day 0 to Day 4; max 6 doses)

#### **Assessment Period**

Every 6 weeks for first 6 months Every 3 months thereafter (starting Month 6) OS Followup Period Up to 2 years

PI: Evan Rosenbaum MD Lauren Banks, MD PhD

## Conclusions

Afamicel and letecel have shown promise in synovial sarcoma and myxoid round cell liposarcoma

There is a pressing need to identify biomarkers of response/resistance

Exploring alternate adoptive cell approaches, ie TIL, as new targets, ie fusions will contribute to novel and exciting therapeutic options in the future

### MSK team

#### **Sarcoma Medical Oncology**

- Viswatej Avutu
- Lauren Banks
- Jason Chan
- Ping Chi
- Mark Dickson
- Mrinal Gounder
- Mary Louise Keohan
- Ciara Kelly
- Bob Maki
- Sujana Moova
- Evan Rosenbaum
- William D. Tap

#### **Surgical Oncology**

- Samuel Singer
- Aimee Crago
- George Li
- Marion Liu
- Edmund Bartlett
- Murray Brennan

#### Singer Lab

- Rodrigo Gularte-Merida
- Evan Seffar

#### Sarcoma Pathology

- Cristina Antonescu
- Meera Hameed
- Narsi Agaram

#### **Koff Lab**

#### **Radiation Oncology**

- Kaled Aletkiar
- Minsi Zhang

#### **Pediatric Oncology**

- Julia Glade-Blender
- Emily Slotkin
- Leonard Wexler
- Paul Meyers

#### **Cellular Therapeutics**

- Jae Park
- Christopher Klebanoff
- Roisin O'Cearbhaill

#### **Support**













- NIH Supplement Alliance 3U10-CA180821-03
- 1R01FD007528-01
- P50 CA217694

